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Abstract

Rolling-window methods are widely used to explore time variation in economic relationships. Test-
ing across overlapping windows induces a multiple-testing problem and can inflate the familywise error
rate. Existing corrections are often either overly conservative or computationally intensive. We propose
a harmonic mean p-value procedure that provides a global test together with window-level diagnostics.
We establish asymptotic familywise error rate control under conditions that accommodate overlap de-
pendence. Simulations using several standard time-series tests show accurate size, higher power, and
substantially lower computational cost than bootstrap-based extreme-statistic procedures.

JEL classification: C12; C32; C58.
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1 Introduction

Structural change and parameter instability are common in macroeconomic and financial time series (e.g.

|Andrews, 1993; Bai and Perron, [1998; |Cheng et al., 2016; Hanson, |2002; Stock and Watson, [1996)). A

common way to explore such time variation is to estimate a model using rolling windows and track how

coefficients or test statistics evolve over time (e.g. Diebold and Yilmaz| |2014}; |Giacomini and White, [2006}

|Giacomini and Rossil 2010; Inoue et al., [2017; [Yousuf and Ng} 2021)). Rolling-window methods are widely

used in applications such as Granger-causality analysis, market-efficiency tests, and time-varying dependence
measures.
A key statistical complication of rolling-window analysis is multiplicity, which is caused by testing across

overlapping windows. Interpreting each window-level test at its nominal level can inflate the familywise

error rate (FWER) (e.g. [Harvey et all [2016} [Romano and Wolf] [2005; [White, [2000]). Some studies interpret

nominal significance in individual windows as evidence of time variation, without adjusting for multiplicity.
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A convenient option is to apply generic multiplicity corrections such as Bonferroni or Benjamini-Hochberg
(Benjamini and Hochberg), [1995), which can be conservative under the strong dependence induced by over-
lapping windows. Another approach resamples under the global null to calibrate an extreme rolling statistic,
as in sup-type structural-break tests (e.g. |Andrews| 1993; [Shi et al., [2018},|12020)). It provides a global deci-
sion, but obtaining window-level diagnostics typically requires an additional step, such as a stepdown rule
(Romano and Wolf] 2005). This approach can be computationally demanding, since each draw repeats the
rolling estimation across all windows.

We frame rolling-window inference as a multiple-testing problem and focus on FWER control. We
make three contributions. First, we combine window-wise p-values via the harmonic mean p-value (HMP;
Wilson,, 2019). This yields a global decision and a window-level diagnostic rule. Second, we establish
verifiable conditions under which the HMP calibration controls the FWER asymptotically in the presence
of overlap dependence. The argument is general and applies to any local test satisfying these conditions.
Third, simulations show reasonable finite-sample properties with substantial computational savings relative
to bootstrap-based extreme-statistic procedures. An empirical application further illustrates how the global

decision and the diagnostic rule can be used together.

2 Multiple-testing correction in rolling windows

Rolling-window analysis turns a single time-series question into a sequence of related hypothesis tests. Let
{Z}E | be the observed sample. Use windows of length m = m¢ and define Wy, = {k,k+1,....k+m — 1}
fork=1,..., K with K =T—m++1. Let Hék) be the window-wise null based on observations {Z; : t € W} },

and let py ,, be the corresponding p-value. The global null of interest is

K
Ho = () Hy",
k=1
which states that the null holds in every window. If we reject Hy whenever any Ho(k) is rejected at level a,
the FWER can substantially exceed o when K is large. This is the multiplicity problem induced by rolling
windows.

A common response is to calibrate an extreme rolling statistic, such as ming, px, ,,, by bootstrap under the
global null. A typical implementation estimates a restricted model imposing Hj, generates a pseudo-sample
by resampling residuals or simulating innovations, reruns the rolling estimations, and records the extreme
statistic. Repeating this for B draws yields an empirical null distribution of the extreme statistic and a
global bootstrap p-value. One limitation is interpretability. This procedure delivers a global decision, but
does not directly provide FWER-controlled window-level diagnostics without an additional stepdown rule

or other decision rules. Another concern is computational cost. Each draw repeats the rolling computation



over all K windows, so the cost grows quickly with B, K, and model complexity.
Instead, we use HMP to aggregate the window-wise p-values pim,...,PpKx,m. With equal weights, the

harmonic mean p-value is

Under marginal validity and lower-tail independence of the p-values, the Landau approximation in [Wilson

(2019) yields a calibrated combined p-value:

v =1-Fr (pg'),

where F7, is the corresponding Landau CDF. When a non-negligible subset of window-wise p-values is small,
pr becomes small as well. This behavior makes HMP particularly suitable for rolling-window settings, where
departures from the null typically persist over several adjacent windows rather than appearing as a single
isolated event.

To justify this calibration, we work in an asymptotic regime where T — oo, m = mp — oo, and
K=T-m+1 — oco. Assumptions formalize the requirements in a rolling-window setting. Let
{Z;}+ez be the underlying process generating the observed sample {Z;}1_;. Let h : Z — R be measurable,
define 6y := E[h(Zy)], and set X; := h(Z;) — 0g. For each window, define the window mean gk’m =
m Y ew, MZ) € R¢ and the window fluctuation Uy, := ﬁ(@km —0y) € R%.

Assumption 1. (Data). Under Hy, {X;} is strictly stationary and strongly mizing with coefficients a(r).
There ezists 1 > 0 such that E|| Xo||>*" < co and 300, a(r) ™) < oo. The long-run covariance T' =

ZjeZ Cov(Xo, X;) exists, is finite, and is nondegenerate along the directions relevant for the local statistic.

Assumption 2. (Window separation). Consider two windows k # € whose separation satisfies [{ — k|/m —

dre € (0,00). Define the limiting overlap fraction ke := max{1 — g, 0} € [0,1).

Assumption 3. (Local statistic). The window-wise statistic has the form Ty, = Tm(Ukm,ﬁk,m), where
nuisance estimator Mg m N no under Hy. There exists a measurable map 7(-,m0), continuous in its first

argument, such that jointly for any pair (k, /),

(Tk,myTZ,m) = (T(Uk,m7n0)7T(U€,m7n0)) + Op(l)'

Here 0,(1) is with respect to T — oo and m — oo under Hy. In addition, there exist constants C >0, ¢ > 1,

and M < oo such that, for all ||ul| > M, 7(u,n9) < C(1+ [|ul|?).

Assumption 4. (p-value mapping). Define the window-wise p-value pg . = T (Tkm), where Ty, : R —
(0,1) is continuous and strictly decreasing on the relevant upper tail. Under Hy, each pym, is marginally

valid, in the sense that for any u € (0,1) and any fized k, Pr(pxm < u) <u+o(1), where o(1) is as T — oo



and m — oo.

Assumption [I| yields a functional central limit theorem for the partial-sums process of {X;} (Herrndorf,
1985), which implies a Gaussian limit for window fluctuations Uy ,,. Assumption [2| excludes asymptotic
full overlap between distinct windows at the window-length scale. Assumption [3| links the extremes of the
statistic T, to the extremes of Uy ,,, through a continuous map with a polynomial growth control. Finally,

Assumption [4] requires that the mapping 7, yields marginally valid window-wise p-values under Hj.

Proposition 1 (Pairwise lower-tail independence). Under Assumptions the rolling-window p-values

Dk,m ond De.m are asymptotically lower-tail independent in the sense that

. . P(pk:,m < U, Pe,m < u)
lim limsup

ul0  m—oo u

=0.

Proposition [1| shows that overlap dependence is compatible with asymptotic lower-tail independence of
the window-wise p-values, which follows as long as the limiting overlap fraction between two windows is
strictly below one. The proof in the Supplementary Material proceeds by establishing a bivariate Gaussian
limit for (U m, Ur,m) with correlation strictly below one and then applying a Gaussian tail bound to translate
this property into lower-tail independence for the induced p-values.

Proposition[I]provides the dependence condition required for HMP calibration, and Assumption [4]ensures

marginal validity. The general results in [Wilson| (2019, 2020) then imply asymptotic FWER control.

Theorem 1. Under Hy and Assumptions[IH{], the combined p-value py satisfies
Plpg <a) <a+o(1)

for any fized o as T — oo, m = mp — 00 and K =T —m+ 1 — oo. Therefore, the test that rejects Hy

when pg < « controls the FWER at level o asymptotically.

Beyond the global test, HMP also supports a multilevel diagnostic rule for identifying windows with

strong local evidence. For each window k, define the adjusted p-value

ﬁk,m =1-Fp [(ka,m)_l] )

)

Under the same conditions, the rule that rejects Hék when Py, < o controls the FWER over the family

) implies rejecting the intersection null

{Hék)}szl. The rule is conservative in the sense that rejecting Héj
HY for any J with j € J, including the global null Hy. Hence, it provides only a sufficient condition
keJ 1o

for global rejection and may flag no windows even when H| is rejected.



Table 1: Global rejection frequencies (size and power; T' = 200, m = 50, « = 0.05; bootstrap B = 500)

Panel A. Size Panel B. Power
Test HMP Bonferroni Bootstrap HMP Bonferroni Bootstrap
Mean 0.056 0.018 0.054 0.803 0.529 0.793
Variance 0.054 0.012 0.058 0.542 0.333 0.532
Ljung-Box 0.051 0.020 0.058 0.661 0.520 0.641
ADF 0.061 0.032 0.060 0.483 0.415 0.464
Granger 0.055 0.016 0.049 0.738 0.348 0.551

3 Simulation study

We investigate the finite-sample size, power, and runtime of the proposed HMP global test in a rolling-
window setting and compare it with standard benchmarks. We generate a time series of length 7" = 200
and apply rolling windows of length m = 50, resulting in K =T — m + 1 = 151 overlapping windows and a
sequence of window-wise p-values.

We consider five representative local tests in empirical time-series analysis. Under the global null, the local
null holds in every window. Under the alternative, the data depart from the null only over ¢ = 71,...,110;

let I; = 1 on this interval and I; = 0 otherwise. The DGPs are following:
1. Mean (two-sided t-test): y: ~ N(u¢,1) with g; = 0 under the null and p; = 0.61; under the alternative;
2. Variance (x? test): y; ~ N(0,0?) with 02 = 1 under the null and ¢ = 0.81; + 1 under the alternative;

3. Serial Correlation (Ljung-Box test): y; = ¢ryr—1 + €4, & ~ N(0,1) with ¢, = 0 under the null and

¢; = 0.61; under the alternative;

4. Unit root (ADF test): y; = diyi—1 + €4, ¢ ~ N(0,1) with ¢ = 1 under the null and ¢; = (1 — 0.41;)

under the alternative;

5. Granger causality (F-test): (z¢,y:) follows a first-order vector autoregression with i.i.d. Gaussian
innovations. The coefficient on x;_1 in the y; equation is zero under the null and 0.25I; under the

alternative.

We compare three global tests: (i) HMP; (ii) Bonferroni; and (iii) a parametric bootstrap calibration of
the minimum rolling p-value with B = 500 draws. Results are based on 1,000 Monte Carlo replications at
the nominal level o = 0.05.

Tablereports the global rejection frequencies under the global null (size) and alternative (power). Under
the null, both HMP and bootstrap are close to 0.05, while Bonferroni is conservative, as expected under
strong overlap dependence. Under the alternative, HMP is substantially more powerful than Bonferroni and
matches or exceeds the bootstrap across all designs; the advantage is especially pronounced in the Granger

causality design.



Table 2: Computational time (in seconds; T' = 200, m = 50; bootstrap B = 500).

Test Baseline HMP  Bootstrap
Mean 0.08 0.08 17.55
Variance 0.10 0.09 22.70
Ljung-Box 0.16 0.09 62.84
ADF 1.28 0.08 620.27
Granger 1.46 0.08 1,089.73

Notes: Baseline reports the time for rolling computation. HMP and Bootstrap report additional time beyond the
baseline.

Table 3: Global p-values for directional Granger causality (T' = 276, m = 52; bootstrap B = 500).
IDEMV — returns returns — IDEMV

HMP 0.0005 0.0170
Bootstrap 0.0380 0.0580

Table |2 reports the runtime of 1,000 Monte Carlo replications. The rolling computations take the same
baseline time for both procedures. We then report the addtional time by HMP and the bootstrap, respec-
tively. Relative to the baseline, the extra time for HMP is negligible, whereas the bootstrap dominates the
runtime. The local test complexity has little effect on HMP, but it increases the bootstrap time sharply.
For example, in the Granger causality design, HMP remains around 0.08 seconds, whereas the bootstrap
runtime rises to 1,089.73 seconds. Overall, HMP maintains near-nominal size, delivers competitive power,

and yields substantial computational savings relative to the bootstrap.

4 Empirical illustration

We illustrate our method by examining the time variation in Granger causality between weekly S&P 500
returns and the infectious disease equity market volatility index (IDEMV) of pandemic-related financial
uncertainty (Baker et al.,[2020). The sample runs from January 31, 2019 to May 11, 2024 (276 observations),
covering the U.S. COVID-19 public health emergency (PHE) period and one year on either side.

We estimate a bivariate vector autoregression using 52-week rolling windows, yielding 225 windows. In
each window, we run Granger-causality F-tests in both directions with the lag order selected by BIC from
one to five and obtain the corresponding window-wise F-statistics and p-values. We then apply HMP to
the window-wise p-values and, for comparison, implement the residual-based sup-F' bootstrap of |Shi et al.
(2018} |2020)) with 500 draws. At the 5% level, HMP rejects the global null in both directions, whereas the
bootstrap rejects in only one direction (Table [3)).

Figure[I]reports the window-level evidence under both methods. In the direction from IDEMV to returns,
the HMP diagnostics flag more early-sample windows than the bootstrap, which is consistent with the sharp
rise in IDEMV at the start of the pandemic. In the reverse direction, the HMP test rejects globally, but flags

no individual windows. This is not a contradiction. The HMP window-level rule is conservative because it is



Rolling Granger causality comparison (m = 52)
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Figure 1: The top panels plot the multilevel HMP-adjusted p-values {fy m } i, with o = 0.05. The bottom
panels plot rolling F-statistics with 5% bootstrap critical values. Exceedances are marked as window-level
rejections. The z-axis denotes the window ending date; the PHE period is shaded.

only a sufficient condition for global rejection, and it becomes more conservative as the number of windows
grows. Taken together, the global decision answers whether Granger causality is present in any window,

while the diagnostics highlight where local evidence is strong.

5 Conclusion

We frame rolling-window tests as a multiple-testing problem and use HMP to construct an FWER-controlled
global test and a multilevel diagnostic rule at minimal computational cost. Simulations show near-nominal
size and competitive power for global inference relative to bootstrap calibration. The empirical illustration
shows how the global decision and the multilevel diagnostic rule work together to summarize time variation.
Overall, HMP provides a practical alternative to bootstrap-based extreme-statistic procedures in rolling-
window applications. More broadly, the same idea extends to other subsample-based procedures, such as

moving-window and recursive analyses, where many dependent tests are computed on overlapping data.

Appendix A. Supplementary Material

Supplementary material provides proofs for the theoretical results in the main text.



Data availability

Data are available on https://www.policyuncertainty.com/infectious_EMV.html. Code is available on

https://qianjoewu.github.io/|
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