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Abstract

Although ordinal health outcome values are categories like “poor” health or “mod-

erate” depression, they are often assigned numeric values 1, 2, 3, . . . for convenience. We

provide results on interpretation of subsequent OLS-based analysis. For prediction, the

OLS estimand’s “best linear predictor” interpretation requires that these are indeed

the true cardinal values. However, for description, the OLS estimand is the “best linear

approximation” of a summary of the conditional survival functions, regardless of the

true cardinal values. Further, for Blinder–Oaxaca-type decomposition, the OLS-based

estimator is numerically equivalent to a certain counterfactual-based decomposition

of the survival function, again regardless of the true cardinal values. Empirically, we

decompose U.S. rural–urban differences in depression. Including a nonparametric es-

timator that we describe, estimators agree that 33–39% of the rural–urban difference

is statistically explained by income, education, age, sex, and geographic region. The

OLS-based detailed decomposition shows that almost all of this is due to income.
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1 Introduction

Ordinal variables are common in health economics. Such variables take values that are not

numeric but rather categorical. For example, self-reported health status often takes values

“poor,” “fair,” “good,” “very good,” and “excellent,” which have an order from lowest to

highest, but no numeric value. Mental health variables are also often ordinal; our empirical

analysis uses a measure of depression with values “none/minimal,” “mild,” “moderate,” and

“severe.” Some variables are even coded with numeric values, but upon examination these

values do not have a cardinal but merely ordinal meaning, like the Apgar score for newborns

whose numbers are based on underlying categories like “no cyanosis” or “some flexion.”

Even in raw data, ordinal outcome variables often come already coded with numeric

values 1, 2, 3, . . ., making it easy to run OLS regression and related analyses, but this raises

questions about interpretation. Ordinal variables do not even have a well-defined mean,

because values like “fair” and “excellent” cannot be summed or averaged. This suggests

that we must interpret the 1, 2, 3, . . . coding as the cardinal values assigned to the respective

categories. If those are the correct cardinal values, then we actually have a cardinal variable,

and indeed OLS and such can be run and interpreted as usual. But what if those are not

the true cardinal values?

This question has been addressed by several papers in health economics that take seriously

the ordinal nature of such outcomes. These papers specifically consider measuring health

inequality or polarization given an ordinal health outcome variable. For example, Allison

and Foster (2004), Apouey (2007), Abul Naga and Yalcin (2008), and Kobus and Mi loś

(2012) all agree that such measures should be “scale invariant” in the sense of not depending

on whether we code the categories with cardinal values 1, 2, 3 or 1, 2, 10 or 1, 7, 8, etc. The

median-preserving spread of Allison and Foster (2004) and the inequality indices proposed

and studied by Apouey (2007), Abul Naga and Yalcin (2008), and Kobus and Mi loś (2012)

can all be interpreted without any cardinal values. Kaplan and Zhao (2023) also characterize

inequality in terms of a cardinal latent variable that generates the observed ordinal variable,
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which allows a range of cardinal values associated with each ordinal category. To emphasize

the ordinal/cardinal distinction, instead of “scale invariant,” we call all the above approaches

cardinalization-robust because their results are robust to any assignment of cardinal values

to categories.

In the same spirit, we make five contributions to the cardinalization-robust interpretation

of OLS regression and OLS-based Blinder–Oaxaca decomposition with an ordinal outcome.

First, for prediction, we have a negative result: the best predictor of Y is sensitive to

the cardinal values assigned to the categories, so there is no cardinalization-robust “best

linear predictor” interpretation of OLS. That is, if we code the Y values as 1, 2, 3, . . ., then

the interpretation of the OLS estimand as the best linear predictor crucially depends on

1, 2, 3, . . . being the true cardinal values. Second, for description, the OLS estimand with

Y coded 1, 2, 3, . . . can be interpreted as the best linear approximation of the sum (across

all Y categories) of conditional survival function values. This is explained in more detail

in Section 2.3, but the main point is that unlike with prediction, the 1, 2, 3, . . . coding here

is innocuous: the OLS interpretation does not require those values to be the true cardinal

values.

Third, as a practical contribution for ordinal decomposition, we describe how to apply

the methodology of Chernozhukov, Fernández-Val, and Melly (2013) to get a cardinalization-

robust decomposition of the survival function difference. This approach is based on a coun-

terfactual distribution that combines the marginal X distribution of one group with the

conditional distribution (of Y given X) from the other group. This is essentially a gener-

alization of the binary outcome decomposition of Fairlie (2005) that traces back at least to

Even and Macpherson (1990) and Farber (1987); it is also more flexible than the ordered

probit/logit decomposition of Bauer and Sinning (2008). We also describe how to implement

a specific nonparametric version of this approach that we apply in our empirical analysis.

Fourth, again with Y coded as 1, 2, 3, . . ., we derive a numerical equivalence between

two very different estimators: the OLS-based Blinder–Oaxaca “mean” decomposition, and
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the cardinalization-robust counterfactual survival function decomposition based on Cher-

nozhukov, Fernández-Val, and Melly (2013) when using OLS to estimate linear proba-

bility models for the distribution regression step. Thus, despite seeming like it relies on

1, 2, 3, . . . as cardinal values, the OLS-based Blinder–Oaxaca decomposition actually has a

cardinalization-robust interpretation. Among other practical implications, this means we can

reinterpret previously published Blinder–Oaxaca results in terms of a robust counterfactual

survival function decomposition. It also means that going forward we can more confidently

use OLS-based Blinder–Oaxaca, and more appropriately interpret its results, with only the

caveat that other estimators may reduce functional form misspecification. The Blinder–

Oaxaca approach also readily produces a “detailed decomposition” that shows how much of

the overall difference is statistically explained by each variable individually.

Fifth, we empirically examine the mental health disparity between urban and rural groups

in the U.S., decomposing the distributional difference in a measure of depression. Depression

is important to study due to its large aggregate effects both personally and economically,

with an annual total economic burden in the U.S. estimated in the hundreds of billions of

dollars (Greenberg, Fournier, Sisitsky, Simes, Berman, Koenigsberg, and Kessler, 2021). The

explanatory variables are education, age, sex, income, and geographic region. Our various

estimators attribute 33–39% of the depression difference to these variables. That is, these

variables explain a substantial amount, but still leave a major of the urban–rural difference

unexplained. We include a nonparametric estimator that performs model selection among

millions of candidate models, as we describe in detail. Using the Blinder–Oaxaca approach,

we report a detailed decomposition showing that income explains much more than any other

covariate. Even though we do not believe that the depression categories correspond to

cardinal values 1, 2, 3, 4, our equivalence result implies that this detailed decomposition is

still meaningful.

We include results for Blinder–Oaxaca-type decomposition because of its widespread use

and importance. It is commonly used to decompose an overall mean difference in outcome
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between two groups into two components: one attributed to the group difference in explana-

tory variable means, and the other to differences in regression coefficients. Using the same

idea published by Kitagawa (1955) and used earlier in the 1940s (see her footnote 3), the

papers of Blinder (1973) and Oaxaca (1973) have over 20,000 citations in Google Scholar,

with over 6000 of those coming since 2019, spanning the fields of economics, public health,

sociology, medicine, demography, and others. Some examples in health include decomposing

differences in various biomarkers by gender (Carrieri and Jones, 2017), self-reported health

by age (Idler and Cartwright, 2018), various health outcomes by education or income (Kino

and Kawachi, 2020), diabetes by Latinx identity (Cartwright, 2021), and obesity/BMI by

race (Sen, 2014).

Despite the importance of both decomposition and ordinal variables, there is a limited

literature on decomposition with ordinal outcomes. The extensive Handbook of Labor Eco-

nomics chapter on “Decomposition Methods in Economics” (Fortin, Lemieux, and Firpo,

2011) includes discussion of many population functionals and estimators and causal identifi-

cation, but does not include the word “ordinal” anywhere in its 102 pages. (And “ordered”

only appears in the context of parametric estimation of conditional distributions for a contin-

uous outcome after “discretizing the outcome variable” (p. 70).) Some empirical work simply

reduces the ordinal variable to a binary variable before doing a probit-based decomposition;

for example, see Zhang, Bago d’Uva, and van Doorslaer (2015, eqn. (7)) and Hauret and

Williams (2017, p. 217). Although not “wrong,” such simplification loses information and

precision. Bauer and Sinning (2008) propose an ordered probit/logit decomposition, but it is

used only to introduce nonlinearity while still treating the ordinal outcome as if had cardinal

values 1, 2, 3, . . ., as seen in their equations on page 200. The same is true of Demoussis and

Giannakopoulos (2007).1 Similarly, empirical work often takes 1, 2, 3, . . . as cardinal values

and then runs the standard OLS-based Blinder–Oaxaca decomposition; for example, see

Pan, Liu, and Ali (2015, §2.4), Awaworyi Churchill, Munyanyi, Prakash, and Smyth (2020,

1Their [7] and [8] have an important typo: the left-hand sides should have expectations of S rather than
probabilities, as is clear from the text (“expected JS”) and the right-hand sides, and equation [9] later.
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§§2.1–2.2), Idler and Cartwright (2018), and Pilipiec, Groot, and Pavlova (2020, §2.2). Mad-

den (2010, §2) acknowledges the cardinalization is not fully appropriate, yet his robustness

check’s ordered probit decomposition still uses the same cardinalization (p. 111). However,

recall that our new results say that the 1, 2, 3, . . . coding in all the above-cited work actually

has a cardinalization-robust interpretation in terms of survival functions. That is, all the

above methods and results are still valid, just with a somewhat different interpretation that

we detail in our results.

Paper structure Section 2 characterizes the interpretation of OLS regression with an

ordinal outcome, both in terms of prediction and description. Section 3 describes a frame-

work for ordinal decomposition based on the counterfactual approach of Chernozhukov,

Fernández-Val, and Melly (2013), as well as our new equivalence between “mean” and sur-

vival function decomposition. Section 4 describes estimation and inference, as well as our

second equivalence result that provides a meaningful, robust interpretation for the naive

OLS-based Blinder–Oaxaca decomposition. Section 5 contains our empirical contributions

on rural–urban mental health disparities in the U.S. Appendix A contains an additional

theoretical proof, and Appendix B discusses quantile decomposition for ordinal variables.

Notation and abbreviations Random and non-random vectors are respectively typeset

as, e.g., X and x, while random and non-random scalars are typeset as X and x, and random

and non-random matrices as X and x. The indicator function is 1{·}, with 1{A} = 1 if

event A occurs and 1{A} = 0 if not. Acronyms used include those for Akaike information

criterion (AIC), cumulative distribution function (CDF) linear probability model (LPM),

National Health Interview Survey (NHIS), and ordinary least squares (OLS).
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2 Ordinal regression

We consider OLS regression with an ordinal outcome variable Y whose J categories have

been assigned the numeric values 1, 2, . . . , J , respectively. In particular, we are interested in

the OLS estimand’s interpretation when these are not the actual cardinal values associated

with each category.

An equivalence for the “mean” is given first, followed by OLS results for both prediction

and description. In later sections, we extend these results to Blinder–Oaxaca decomposition.

2.1 Mean

Although an ordinal random variable Y does not have a mean, if we assign the numeric values

1, . . . , J to its J categories, then we can compute a “mean.” Because we do not consider any

other numeric assignments, throughout the paper we write this “mean” as E(Y ). Lemma 1

shows that this “mean” has a meaningful, cardinalization-robust interpretation.

Lemma 1. Given ordinal random variable Y , if we assign the numeric values 1, . . . , J to its

J categories, then its “mean” is 1 +
∑J−1

j=1 P(Y > j).

Proof. The “mean” is

E(Y ) =
J∑

j=1

j P(Y = j)

= P(Y = 1) + 2 P(Y = 2) + · · · + J P(Y = J)

=

=1︷ ︸︸ ︷
[P(Y = 1) + P(Y = 2) + · · · + P(Y = J)]

+ [

=P(Y >1)︷ ︸︸ ︷
P(Y = 2) + · · · + P(Y = J)]

+ · · ·

+ [

P(Y >J−1)︷ ︸︸ ︷
P(Y = J)]
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= 1 +
J−1∑
j=1

P(Y > j).

Lemma 1 shows the “mean” can be interpreted in terms of the survival function, which

does not depend on any particular cardinal value assignment. The summand P(Y > j) is

the survival function of Y evaluated at category j. Alternatively, the final expression could

be rewritten in terms of the CDF as J −
∑J−1

j=1 P(Y ≤ j). However, the survival function

expression makes it more directly clear that higher values correspond to higher probabilities

of higher-valued categories. For example, if one ordinal distribution first-order stochastically

dominates another, then it has a higher survival function at all j, and thus has higher “mean”

of 1 +
∑J−1

j=1 P(Y > j).

2.2 Prediction

With a cardinal-valued Y , it is well known that the mean provides the best predictor given

a quadratic loss function (e.g., Kaplan, 2022, §2.5.2):

E(Y ) = arg min
g

E[(Y − g)2].

Continuing to maintain quadratic loss, this result then implies that the conditional mean is

the best predictor of Y given vector X (e.g., Kaplan, 2022, §6.3.5). It also implies that the

OLS estimand β is the best linear predictor (e.g., Kaplan, 2022, §7.5) in the sense of

β = arg min
b

E[(Y −X ′b)2].

Despite Lemma 1, without committing to a particular assignment of cardinal value to each

category, we cannot derive any such best predictor results with an ordinal Y . This is true even

for the simplest case of the unconditional mean, as seen in the following counterexample.

First, let P(Y = y) = 1/5 given cardinal values y = 1, 2, 3, 4, 5. The true mean is thus

E(Y ) = 3. If the cardinal values are really 1, . . . , 5, then this is indeed the best predictor

of Y . However, imagine the cardinal values are instead 1, 2, 3, 4, 10. In that case, the true
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mean is (1 + 2 + 3 + 4 + 10)/5 = 4, so the best predictor is 4. That is, we cannot simply code

the categories as 1, . . . , J to get a “mean” that is the best predictor regardless of the true

cardinal values. Consequently, we cannot generally interpret a nonparametric regression’s

conditional “mean” estimand as the best predictor of Y given X, and we cannot interpret

the OLS estimand as the best linear predictor.

Theorem 2. If Y is an ordinal random variable, then given a quadratic loss function, the

best predictor of Y , the best predictor of Y given X, and the best linear predictor of Y given

X all depend on the true cardinal values corresponding to the categories of Y .

Proof. The counterexample in the text preceding Theorem 2 shows the best predictor of Y

is not invariant to the cardinal values of the categories. Given scalar X = 1, this is also

a special case of the best predictor of Y given X and the best linear predictor of Y given

X.

2.3 Description

Although prediction is sensitive to the true cardinal values, the OLS estimand can be inter-

preted descriptively without any cardinalization. Lemma 1 immediately generalizes to the

conditional “mean” function

m(x) ≡ E(Y | X = x) = 1 +
J−1∑
j=1

P(Y > j | X = x). (1)

That is, when coding Y categories as 1, . . . , J , we can interpret the conditional “mean” as a

sum of conditional survival functions, analogous to the unconditional case. This conditional

“mean” function is the estimand of a nonparametric regression of Y (coded 1, . . . , J) on X.

When Y is cardinal-valued, it is well known that the OLS estimand β (the vector of linear

projection coefficients) can be interpreted as the best linear approximation of the conditional

mean function, with “best” again in terms of quadratic loss (e.g., Kaplan, 2022, §7.4):

β = arg min
b

E{[m(X) −X ′b]2}. (2)
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When Y is ordinal, the conditional “mean” m(X) in (2) has the cardinalization-robust

interpretation given in (1). Thus, the OLS estimand X ′β can be interpreted as the best

linear approximation (in the mean squared error sense) of the sum of conditional survival

functions in (1).

Theorem 3 shows that running OLS with an ordinal Y coded with values 1, . . . , J yields

a meaningful interpretation even if we do not believe the 1, . . . , J represent cardinal values.

Theorem 3. Let Y be an ordinal random variable whose J categories are assigned numeric

values 1, . . . , J . Then, regardless of the true cardinal values of the categories: a) the estimand

of a nonparametric regression of Y on X can be written in terms of the conditional survival

function as in (1); b) for OLS regression of Y on X, the population estimand X ′β is the

best linear approximation in the sense of (2).

Proof. Combine (1) and (2).

3 Ordinal decomposition: framework and estimands

Turning attention to decomposition, this section introduces the counterfactual distribution

framework used for both our practical and theoretical contributions. We use the frame-

work of Chernozhukov, Fernández-Val, and Melly (2013), adapting their formulas to ordinal

outcomes. Then, building on Lemma 1, we show how a naive “mean” decomposition is

equivalent to a cardinalization-robust survival function decomposition.

3.1 Counterfactual distribution framework

First, we introduce notation for the main variables and functions. Ordinal outcome Y is a

random variable with underlying categorical values like “low,” “medium,” and “high” that

for notational convenience are labeled as 1, 2, . . . , J . Covariate vector X is a random vector

including an intercept and other explanatory variables. Cumulative distribution functions

(CDFs) have subscripts of the corresponding random variables: FY (·) for the CDF of Y ,
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FX(·) for the CDF of X, and FY |X(· | x) for the conditional CDF of Y given X = x.

The survival function is the complement of the CDF: SY (y) ≡ P(Y > y), or equivalently

SY (·) = 1 − FY (·). The two groups (populations) of interest are labeled A and B, generally

used as superscripts. Thus, for group A: Y A is the ordinal outcome with CDF FA
Y (·) and

survival function SA
Y (·), XA is the covariate vector with CDF FA

X(·) and support XA, and

FA
Y |X(· | ·) is the conditional CDF. For group B, the A superscripts are all replaced with B

superscripts. Similarly, a C superscript indicates the counterfactual distribution, introduced

below.

Following Chernozhukov, Fernández-Val, and Melly (2013, §2.1), the population-level

counterfactual distribution is defined as follows. The thought experiment is: starting from

group B, what if we keep fixed the conditional distribution but change the covariate distribu-

tion to that of group A? Thus, we can see how much of a change in the outcome distribution

is statistically explained purely from the difference in covariate distributions. Because Y is

ordinal with J categories, its distribution is fully characterized by the J − 1 values of FY (y)

for y ∈ {1, . . . , J − 1}. Mathematically, as in (2.1) of Chernozhukov, Fernández-Val, and

Melly (2013) or (27) of Fortin, Lemieux, and Firpo (2011), the counterfactual CDF is

FC
Y (y) ≡

∫
XA

FB
Y |X(y | x) dFA

X(x), y ∈ {1, . . . , J − 1}. (3)

As in (2.3) of Chernozhukov, Fernández-Val, and Melly (2013), this requires XA ⊆ XB; if

instead XB ⊆ XA, then the A and B labels can be switched. For intuition about (3), consider

the extreme cases: if FA
X = FB

X , then (3) yields FC
Y (y) = FB

Y (y), and if FB
Y |X = FA

Y |X , then

(3) yields FC
Y (y) = FA

Y (y).

3.2 Summary statistic interpretations and equivalences

The full distributions FA
Y , FB

Y , and FC
Y can and should be reported, but this requires re-

porting 3(J − 1) values, so a summary can facilitate communication and understanding of

results. We show an equivalence between a naive “mean” decomposition and a robust survival
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function decomposition. An alternative quantile decomposition is discussed in Appendix B.

Everything in this section is still at the population level, to describe and understand the

interpretation of different possible population objects of interest. Estimation and inference

follow in Section 4.

Notationally, denote differences as ∆, with the total (subscript T ), explained (E), and

unexplained (U) differences respectively

∆T , ∆E, ∆U . (4)

For an ordinal outcome, a natural decomposition compares survival function differences

summed (or averaged) across categories. This does not depend on the cardinal values of the

categories. Although in a different context, this shares the spirit of Theorem 1 of Kobus

and Mi loś (2012), who find that any health inequality index satisfying certain axioms can be

written as transformations of the category frequencies; our expression in (5) similarly depends

only on category frequencies. Given survival functions SA
Y (·) and SB

Y (·), we summarize their

difference as
J∑

j=1

[SA
Y (j) − SB

Y (j)], (5)

and similarly for other pairs of survival functions. Summing from j = 1 to J−1 is equivalent

because SA
Y (J) = SB

Y (J) = 0. Taking the average (instead of sum) would multiply (5) by

1/J , but ultimately the explained proportion would remain identical because the 1/J would

cancel out in (7) below. Given (5), using the notation of (4) and adding superscript S for

“survival,” the corresponding differences are

∆S
T =

J∑
j=1

[SA
Y (j) − SB

Y (j)], ∆S
E =

J∑
j=1

[SC
Y (j) − SB

Y (j)], ∆S
U =

J∑
j=1

[SA
Y (j) − SC

Y (j)], (6)

and the explained proportion is

∆S
E

∆S
T

=

∑J
j=1[S

C
Y (j) − SB

Y (j)]∑J
j=1[S

A
Y (j) − SB

Y (j)]
. (7)

This is equivalent to a CDF-based decomposition. The components in (6) equal the
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negative of their CDF-based analogs. For example,

∆S
T =

J∑
j=1

[SA
Y (j) − SB

Y (j)] =
J∑

j=1

{[1 − FA
Y (j)] − [1 − FB

Y (j)]} = −
J∑

j=1

[FA
Y (j) − FB

Y (j)],

and similarly for the other differences in (6). Thus, the explained proportion remains the

same because (−∆S
E)/(−∆S

T ) = ∆S
E/∆S

T .

Extending Lemma 1, the survival function decomposition is also equivalent to a naive

“mean” decomposition after coding the Y categories as 1, . . . , J . We state this as a corollary

to a more general result.

Theorem 4. Let W and Z be discrete random variables with possible values {1, 2, . . . , J}.

Then, E(W )−E(Z) =
∑J

j=1[SW (j)−SZ(j)], where SW (j) ≡ P(W > j) and SZ(j) ≡ P(Z >

j) are the survival functions.

Proof. Plugging in for E(W ) and E(Z) from Lemma 1,

E(W ) − E(Z) = 1 +
J−1∑
j=1

SW (j) −

[
1 +

J−1∑
j=1

SZ(j)

]
=

J−1∑
j=1

[SW (j) − SZ(j)]

=
J∑

j=1

[SW (j) − SZ(j)].

Corollary 5. Given distributions of ordinal random variables Y A, Y B, and counterfactual

Y C, the survival function decomposition is equivalent to the “mean” decomposition after

coding Y category values as 1, . . . , J , in the sense that the explained proportion in (7) equals

the “mean”-based explained proportion.

Proof. Theorem 4 implies the following for the “mean”-based decomposition components.

The total difference is

∆µ
T ≡ E(Y A) − E(Y B) =

J∑
j=1

[SA
Y (j) − SB

Y (j)] = ∆S
T .
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Similarly, for the explained difference,

∆µ
E ≡ E(Y C) − E(Y B) =

J∑
j=1

[SC
Y (j) − SB

Y (j)] = ∆S
T .

Thus, the explained proportions are also equal: ∆µ
E/∆µ

T = ∆S
E/∆S

T .

Corollary 5 serendipitously implies that we can interpret a “mean” decomposition as a

survival function decomposition. Thus, if a paper reports results for an ordinal “mean”

decomposition, then even if we disagree with a literal “mean” interpretation, we can still

agree about the relative magnitude of explained and unexplained components.

3.3 Implications for regression-based decomposition

Corollary 5 applies to regression-based decomposition. Coding Y as 1, . . . , J , let mB(x) ≡

E(Y B | XB = x), which by (1) can be interpreted more robustly as 1 +
∑J−1

j=1 S
B
Y (j | XB =

x). The counterfactual mean is E(Y C) = E[mB(XA)]. The decomposition is

E(Y A) − E(Y B) =

unexplained︷ ︸︸ ︷
E(Y A) − E[mB(XA)]︸ ︷︷ ︸

E(Y C)

+

explained︷ ︸︸ ︷
E[mB(XA)]︸ ︷︷ ︸

E(Y C)

−E(Y B) . (8)

By Corollary 5, the decomposition in (8) can be interpreted in terms of survival functions.

Thus, a nonparametric regression-based “mean” decomposition always has a survival func-

tion interpretation, without any assumption about cardinalization.

In Section 4.2, we provide an even more precise equivalence result for when OLS is used

to estimate the decomposition.

4 Ordinal decomposition: computation and equivalence

Sections 4.1 and 4.3 closely follow the estimation and inference of Chernozhukov, Fernández-

Val, and Melly (2013). We continue the notation introduced in Section 3.1. Theoretically,

ordinal Y is simpler than continuous Y (as in Chernozhukov, Fernández-Val, and Melly,
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2013) because there are only J − 1 values at which we need to estimate the counterfactual

CDF, rather than a continuum of an infinite number of points. Thus, their asymptotic

results all hold. Our first contribution in this section is to gather practical guidance, which

we follow in our provided code.

Our second contribution is the new equivalence result in Section 4.2. This shows that

the naive Blinder–Oaxaca “mean” decomposition estimator that seems to assume cardinal

values 1, . . . , J can be interpreted as a survival function decomposition estimator that is

cardinalization-robust.

4.1 Estimation

The distribution regression model as in (3.1) of Chernozhukov, Fernández-Val, and Melly

(2013) separately models the conditional CDF evaluated at each y ∈ {1, . . . , J − 1} in turn.

Generally, let Λ(·) be the link function, such as the standard normal or logistic CDF, and

let P (x) be a column vector of transformations of the original covariate vector x. For

example, P (x) can include squares, interactions, higher-degree polynomial terms, or other

basis functions like B-splines. Let γy be the coefficient vector corresponding to category

y ∈ {1, . . . , J − 1}. Then, the model is

FY |X(y | x) = Λ
(
P (x)′γy

)
, y ∈ {1, . . . , J − 1}. (9)

Chernozhukov, Fernández-Val, and Melly (2013, p. 2217) note the link function Λ(·) is not

as important as having a sufficiently flexible P (x). A popular choice of estimator is the

series logit from Hirano, Imbens, and Ridder (2003, p. 1170), where Λ(·) is the logistic CDF

and P (x) contains polynomials or other basis function transformations. Model selection

techniques such as cross-validation can be used to select an appropriately flexible (but not

too flexible) model in practice. More on basis expansions and model selection can be found

in textbooks like that of Hastie, Tibshirani, and Friedman (2009, Chs. 5 and 7).

The model in (9) is estimated using (only) data from group B, yielding γ̂B
y for y ∈
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{1, . . . , J−1}. Weights can be used as appropriate. For given y and x values, similar to (9),

the estimated conditional CDF is F̂B
Y |X(y | x) = Λ

(
P (x)′γ̂B

y

)
.

The estimated conditional CDF for group B is then plugged into the counterfactual dis-

tribution formula from (3) along with the estimated marginal distribution of XA. Without

sampling weights, integrating against F̂A
X is equivalent to averaging over the sample val-

ues of XA, so the estimated counterfactual CDF is as given at the end of Remark 3.1 of

Chernozhukov, Fernández-Val, and Melly (2013):

F̂C
Y (y) =

∫
XA

F̂B
Y |X(y | x) dF̂A

X(x) =
1

nA

nA∑
i=1

Λ
(
P (XA

i )′γ̂B
y

)
, y ∈ {1, . . . , J − 1}, (10)

where XA
i are the observations in the group A sample for i = 1, . . . , nA; see also page 71

of Fortin, Lemieux, and Firpo (2011). If there are weights, then a weighted average can be

taken:
nA∑
i=1

w̃A
i Λ
(
P (XA

i )′γ̂B
y

)
,

where w̃A
i ≡ wA

i /
∑nA

i=1 w
A
i normalizes the original weights wA

i to sum to 1; the unweighted

formula above is the special case with w̃A
i = 1/nA for all i.

The actual group A and B outcome distributions can be estimated with the usual esti-

mators. Without weights, for each y ∈ {1, . . . , J − 1},

F̂A
Y (y) =

1

nA

nA∑
i=1

1{Y A
i ≤ y}, F̂B

Y (y) =
1

nB

nB∑
i=1

1{Y B
i ≤ y},

where the Y A
i are observations from the group A sample for i = 1, . . . , nA, and the Y B

i are

observations from the group B sample for i = 1, . . . , nB. With weights, similar to above,

F̂A
Y (y) =

nA∑
i=1

w̃A
i 1{Y A

i ≤ y}, F̂B
Y (y) =

nB∑
i=1

w̃B
i 1{Y B

i ≤ y},

where again w̃A
i ≡ wA

i /
∑nA

i=1 w
A
i and similarly w̃B

i ≡ wB
i /
∑nB

i=1w
B
i normalize the raw weights

to sum to one in each sample.

Given the three estimated CDFs F̂A
Y , F̂B

Y , and F̂C
Y , the survival function decomposition

and its explained proportion can be computed using (6) and (7), noting that estimated CDF
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F̂ (·) implies the corresponding estimated survival function Ŝ(y) = 1 − F̂ (y).

4.2 Equivalence with OLS-based Blinder–Oaxaca

Here, we establish a numerical equivalence between two seemingly very different estimators

of the explained proportion of a decomposition. The first estimator uses the survival function

decomposition in (7), where the counterfactual distribution is estimated as in Section 4.1

using the identity link function Λ(a) = a, i.e., by OLS with a linear probability model. The

second estimator naively applies the conventional OLS-based Blinder–Oaxaca decomposition

of the “mean,” interpreting the coding Y ∈ {1, . . . , J} as cardinal values. For details about

the conventional Blinder–Oaxaca decomposition, see for example (15) and more generally

Section 3.1 of Fortin, Lemieux, and Firpo (2011).

Theorem 6. Assuming both are well-defined given the data, the following two estimates of

the explained proportion are numerically identical. First estimate: after coding Y with cardi-

nal values Y ∈ {1, 2, . . . , J}, estimate the conventional Blinder–Oaxaca mean decomposition,

specifically the explained proportion

(X̄A − X̄B)′β̂B

Ȳ A − Ȳ B
,

where as usual β̂B is the OLS-estimated coefficient vector from regressing Y on X in sample

B, and X̄A is the average of observed X values in the group A sample, with Ȳ A similarly the

average of observed Y values in the group A sample, and with X̄B and Ȳ B defined similarly

for group B. Second estimate: take the survival function decomposition’s estimated explained

proportion ∑J
y=1[Ŝ

C(y) − ŜB(y)]∑J
y=1[Ŝ

A(y) − ŜB(y)]

as in (7), and compute ŜC(·) with the counterfactual distribution estimator in (10) with the

special case Λ(x) = x and P (x) = x, with γ̂B
y estimated by OLS regression of Zy ≡ 1{Y ≤ y}

on X using data sample B.
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Proof. See Appendix A.

Theorem 6 says that we can now more robustly and meaningfully reinterpret published

results based on seemingly inappropriate application of Blinder–Oaxaca decomposition to

ordinal outcomes. Specifically, even if a paper dubiously claims to decompose the “mean”

of an ordinal outcome, we can interpret the estimated explained proportion in terms of

survival functions and a counterfactual distribution that does not depend on any particular

cardinalization. Although other estimators may help reduce functional form misspecification

when estimating the counterfactual distribution, using the Blinder–Oaxaca estimate may still

be useful for exploratory analysis. Additionally, if the functional form misspecification does

not seem too large, Blinder–Oaxaca readily provides a “detailed decomposition” showing

the separate contributions of each covariate; for example, see (17)–(18) and the surrounding

text of Fortin, Lemieux, and Firpo (2011).

4.3 Inference

Inference for the ∆ components can use the bootstrap in Algorithm 2 of Chernozhukov,

Fernández-Val, and Melly (2013). Their bootstrap (and the corresponding theory) is for

s(F̂C
Y ), where s(·) summarizes a distribution like F̂C

Y . For s(·) like the “mean,” analytic

confidence intervals may be readily available, or as long as the bootstrap is being run anyway,

they can be bootstrapped, too. Their Algorithm 2 bootstrap is a very general exchangeable

weight bootstrap that includes the usual bootstrap as a special case. Per their Remark 5.1,

the bootstrap weights (or resamples) should be done separately and independently for groups

A and B. Given each bootstrap weight vector or sample, the full estimation procedure from

Section 4.1 is run, and this is repeated many times. The many bootstrap-world estimates of

the ∆ components can then be used in any standard bootstrap confidence interval formula

as desired.
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5 Empirical results: mental health disparities

We illustrate the preceding approaches through an empirical analysis of rural–urban mental

health disparity in the U.S. Specifically, we decompose the overall rural–urban difference

in depression using age, sex, education, income, and region. Depression is widely studied

because of its prevalence and importance. For example, Greenberg et al. (2021) estimate that

in 2018 in the U.S., the aggregate economic burden of adults with major depressive disorder

exceeded $300 billion. This includes the costs of medical care, suicide, and decreased work

hours as well as productivity. Our analysis was performed in R (R Core Team, 2022), with

help from packages ggplot2 (Wickham, 2016), ggmosaic (Jeppson and Hofmann, 2023;

Jeppson, Hofmann, and Cook, 2023), and fastglm (Huling, 2022). Code to replicate our

results is available online.2

5.1 Data

We use the publicly available NHIS 2022 data (National Center for Health Statistics, 2022),

chosen for its inclusion of mental health assessment and recent availability. Our analysis

targets individuals aged 24–64, focusing on those of working age and surpassing the average

age at college graduation in the U.S.

The following variables are used. The outcome variable Y (PHQCAT_A) measures the

severity of depressive symptoms, summarizing the eight-item Patient Health Questionnaire

into four categories from low to high: “none/minimal,” “mild,” “moderate,” and “severe.”

The rural and urban groups are defined using variable URBRRL: group A contains individuals

who live in counties categorized as nonmetropolitan, while group B is large central metro

counties. We use the provided variables for education (EDUCP_A), sex (SEX_A), age (AGEP_A),

family income (POVRATTC_A), and geographic region (REGION) to construct our explanatory

vector X, as described in Section 5.2. The estimation uses the sampling weight variable

(WTFA_A). We drop 282 observations (3.4%): those for which either age or urban group is

2https://qianjoewu.github.io/
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missing, and those that fit our age and urban group restrictions but have another variable

value missing. This leaves 7902 observations for our analysis.
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Figure 1: Urban and rural depression level distributions.

Figure 1 shows a mosaic plot to visualize the distribution of depression levels for rural

and urban groups. There are nA = 2448 individuals in the rural group A and nB = 5454 in

the urban group B. These sample sizes are proportional to the widths of the rural and urban

columns in the plot. Further, the area of each cell (rectangle) is proportional to the sample

proportion of such individuals, which is shown on the label; for example, rural individuals

with mild depression constitute 4.53% of the overall sample. Within each group’s column,

the stacked bar height represents the conditional probability of each depression category,

with splits indicating CDF values. For example, within the rural column, from bottom to

top, these splits indicate F̂A
Y (1), F̂A

Y (2), and F̂A
Y (3), respectively. The figure shows that the
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rural group first-order stochastically dominates the urban group in depression level in the

sample because the rural CDF is below the urban CDF at each category: F̂A
Y (j) ≤ F̂B

Y (j)

at each j ∈ {1, 2, 3, 4}. This says that overall the rural group has higher levels of depression

(worse mental health) than the urban group.

5.2 Estimation

To construct the counterfactual distribution for the rural group, we use distribution regres-

sion with three estimation methods: OLS with a linear probability model (LPM), logit, and

nonparametric series logit.

For LPM/OLS and logit estimation, we include the following explanatory variables: a

dummy variable for high education (equal to 1 if the individual has at least some college

education), sex, age, squared age, income (family poverty ratio: family income divided by

poverty threshold), a dummy variable for “high income” that equals 1 if the family poverty

ratio has been top-coded (value 11), and region dummies for the Northeast, Midwest, and

West (with South the base group).

For nonparametric estimation, we use the following model selection procedure. We run

the procedure separately for each dependent variable 1{Y ≤ y}, y ∈ {1, 2, 3}. The higher-

order terms lack a natural ordering, so technically we do not use “series” logit because

we consider many non-nested subsets of higher-order terms as candidate models. That

is, unlike with a scalar X for which a series estimator includes Xk for k = 0, 1, . . . , K,

here if we include two quadratic terms (for example), we try (X2
1 , X

2
2 ), (X2

1 , X
2
3 ), (X2

2 , X
2
3 ),

(X2
1 , X1X2), (X2

1 , X1X3), etc. First, in every candidate model, we include a linear term

for each explanatory variable described above. Second, we construct a candidate model

for every possible combination of the quadratic terms, which include squared age, squared

income, and interaction terms like high education*age. Third, we conduct logit estimation

for each candidate model and compute the AIC (Akaike, 1974). Fourth, we select the model

with the lowest AIC as the optimal model. Fifth, we consider adding certain cubic terms if
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the corresponding quadratic terms are included in the selected model, and consider adding

quartic terms if the cubic terms are selected, etc.

Instead of AIC, cross-validation could be used for model selection, but there are some

disadvantages in our setting. First, if applied to the very large number of candidate models

described above, the computation time for even 5-fold cross-validation would be prohibitive

(it is already nearly 20 hours with AIC). Second, although computationally faster, there

are drawbacks to applying 5-fold cross-validation to select the penalization hyperparameter

for lasso (Tibshirani, 1996). One drawback is that the result is sensitive to the random

number generator seed used (because the observations in each fold are chosen randomly).

Additionally, the conventional error measures like those available through the glmnet package

(Friedman, Tibshirani, and Hastie, 2010; Tay, Narasimhan, and Hastie, 2023) perform poorly

for the more severe depression categories that comprise a relatively small fraction of the

population. For example, with outcome 1{Yi ≤ 3}, the intercept-only model is selected as

“best.” In principle, this could be addressed by coding an alternative error measure based

on weighted 0–1 loss (e.g., Kaplan, 2023, §14.3.1) that makes it relatively more important

to correctly predict individuals who actually have severe depression. However, because the

AIC model selection works well and such details are far from our main contributions, we do

not pursue this alternative further.

In practice, due to computational constraints, in addition to linear terms we always

include age*income, age*high income, squared age, and squared income in every candidate

model. Each of the 22 additional quadratic terms may be included or excluded, yielding

222 = 4,194,304 candidate models. The selected model is different for each dependent variable

1{Y ≤ y}.3 For each 1{Y ≤ y}, adding cubed income and/or cubed age to the selected

quadratic model resulted in worse (higher) AIC, so we use the selected quadratic models for

3Beyond the baseline terms (high education, sex, age, income, high income, Northeast, Midwest, West,
age*income, age*high income, squared age, and squared income), the selected model with dependent variable
1{Y ≤ 1} includes high education*age, high education*income, high education*high income, sex*income,
sex*Northeast, age*West, income*Midwest; the selected model with 1{Y ≤ 2} includes high education*sex,
high education*Northeast, sex*age, age*Midwest, and income*Northeast; and the selected model with 1{Y ≤
3} includes sex*income, income*Midwest, high income*Northeast, and high income*West.
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estimation.

In our decomposition result, we include bootstrapped standard errors, which were com-

puted using the procedure outlined by Hlavac (2022, §2.4) and described here in Method 1.

Method 1. [bootstrapped standard errors]

1. Take R random samples with replacement from the relevant set of observations, sepa-

rately and independently for groups A and B (per Section 4.3).

2. In each approach, estimate and perform the decomposition for the sample from Step 1.

3. Calculate the bootstrapped standard error as the standard deviation of the R decompo-

sition estimates from Step 2.

We use R = 1000.

5.3 Results

We decompose the “mean” difference between rural group A and urban group B, equivalent

to decomposing the survival function per Corollary 5. We use the three estimators in Sec-

tion 5.2 as well as the naive conventional Blinder–Oaxaca decomposition estimator, to verify

our Theorem 6.

Table 1 displays the estimated rural, urban, and counterfactual CDFs. As before, the

counterfactual starts from the group B urban distribution and substitutes in the group A

rural distribution of X, while keeping the group B urban conditional distribution of Y given

X. For the counterfactual, the estimated CDF values are similar across estimators, particu-

larly OLS and logit. This suggests that OLS provides a reasonable approximation here, and

with computation time in seconds instead of the many hours taken by our nonparametric

estimator (almost 20 hours on a personal computer). At minimum, OLS seems very practical

for exploratory analysis, although for the final analysis a nonparametric estimator may be

preferred.
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Table 1: Estimated actual and counterfactual CDFs.

Group F̂ (1) F̂ (2) F̂ (3)

Rural 0.751 0.906 0.958
Urban 0.804 0.938 0.976
Counterfactual (OLS/LPM) 0.789 0.925 0.968
Counterfactual (logit) 0.790 0.926 0.968
Counterfactual (series logit) 0.786 0.923 0.968

Table 2: Decomposition results.

Model Explained (%) Unexplained (%)

Naive Blinder–Oaxaca 33.9 66.1
(12.5) (12.5)

OLS/LPM 33.9 66.1
(12.5) (12.5)

Logit 33.0 67.0
(12.6) (12.6)

Series logit 38.9 61.1
(13.8) (13.8)

Bootstrapped standard errors are in parentheses.

Table 2 displays the decomposition results. Given the similar counterfactual CDF esti-

mates in Table 1, naturally the explained proportion estimates are also similar, all in the

range of 33–39 percent. This suggests that education, sex, age, income, and region collec-

tively account for approximately 33–39 percent of the difference in the depression distribution

between the rural and urban groups. This is a substantial amount, but still leaves over half

unexplained.

To verify Theorem 6, we also compute the naive Blinder–Oaxaca decomposition using the

1, . . . , J cardinalization. As expected, compared to the OLS counterfactual approach, the

decomposition results are identical. Thus, even if researchers reported only the conventional

Blinder–Oaxaca decomposition with this data, we could still interpret the results in terms

of a survival function decomposition with a counterfactual CDF estimated by distribution

regression, robust to any alternative cardinalization.

Table 3 shows results of a “detailed decomposition” using the Blinder–Oaxaca estimates,
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Table 3: Blinder–Oaxaca detailed decomposition results.

Variable Rural mean Urban mean Explained (%)

Income (ratio) 3.274 4.715 41.6
(0.055) (0.050) (12.1)

High income 0.020 0.102 -7.8
(0.003) (0.005) (3.5)

Midwest 0.316 0.155 11.3
(0.011) (0.006) (6.2)

West 0.152 0.342 -3.0
(0.009) (0.007) (4.8)

Northeast 0.106 0.165 -2.1
(0.009) (0.006) (2.1)

High education 0.528 0.685 -3.9
(0.012) (0.008) (4.6)

Age 45.635 42.637 -58.0
(0.283) (0.184) (28.0)

Age2 56.3
(28.1)

Female 0.493 0.499 -0.6
(0.012) (0.008) (1.5)

Intercept 1.000 1.000 0.0
(0.0)

Aggregate 33.9
(12.5)

Bootstrapped standard errors are in parentheses.

which is another advantage of being able to use Blinder–Oaxaca, as our results justify. The

detailed decomoposition shows how individuals variables contribute to the overall explained

proportion. For each explanatory variable Xj in the vector X, we show estimates of the

rural mean E(XA
j ), urban mean E(XB

j ), and contribution

[E(XA
j ) − E(XB

j )]β̂B
j

E(Y A) − E(Y B)
× 100%

to the overall explained proportion. Note the sum of the estimated contributions equals

the estimated explained proportion shown in Table 2. The rows are in decreasing order of

absolute contributions, considering the combined contribution of the two income variables
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and the two age variables.

The main message is that income explains far more than any other variable. The com-

bined contribution of income and the high-income dummy is 41.6 + (−7.8) = 33.8, almost

exactly the overall 33.9% explained. The other contributions are a mix of positive and neg-

ative values that nearly fully cancel out. As seen from the rural and urban means, urban

incomes are higher, and higher incomes are associated with lower depression (negative β̂B
j

coefficient), so this partly explains the higher depression levels in rural areas. Although the

contributions of Age and Age2 initially seem even larger, their combined contribution is only

−1.7. The midwest dummy has a contribution of 11.3 to the explained proportion. The

means show that a much higher proportion of the rural individuals live in the midwest, and

being in the midwest is associated with higher depression (positive β̂B
j coefficient), so this

also partly explains the higher depression levels in rural areas. The other contributions are

all relatively small in magnitude, as well as all negative, so altogether they offset the midwest

contribution. The small magnitudes are a combination of small regression coefficients and/or

small differences in the rural and urban means of that Xj variable. Overall, income plays an

important role in explaining the rural–urban difference in depression levels, but it still only

accounts for about a third of the overall difference.

6 Conclusion

We have provided theoretical results about interpreting OLS-based analysis when an ordinal

outcome Y is coded with numeric values 1, 2, 3, . . .. Although the “best linear predictor”

interpretation of the OLS estimand requires such values to be the true cardinal values of the

categories, a “best linear approximation” interpretation remains valid even when those are

not cardinal values, where the approximation is of the sum of conditional survival function

values. Further, the OLS-based Blinder–Oaxaca decomposition can be interpreted as a sur-

vival function decomposition the remains valid even if the 1, 2, 3, . . . are not cardinal values.
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This suggests such “naive” OLS-based results can be interpreted robustly and can be prac-

tically useful when dealing with the commonly used ordinal variables in health economics,

epidemiology, sociology, and related areas in health, medicine, and social science.
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A Additional proof

Proof of Theorem 6. Recall from Corollary 5 that decomposing the “mean” is equivalent to

decomposing the average survival function difference; below, we use the “mean” for simplic-

27



ity. For example, Corollary 5 allows us to write

1
J

∑J
y=1[Ŝ

C(y) − ŜB(y)]

1
J

∑J
y=1[Ŝ

A(y) − ŜB(y)]
=

Ȳ C − Ȳ B

Ȳ A − Ȳ B
,

where Ȳ A and Ȳ B are the sample means when coding Y with cardinal values {1, 2, . . . , J},

and Ȳ C is similarly the mean of the estimated counterfactual distribution F̂C with the same

cardinal values.

Consider the standard Blinder–Oaxaca decomposition with the following notation. Let

Ȳ A and Ȳ B denote the two sample means when coding Y ∈ {1, 2, . . . , J}. Let X̄A and X̄B

also denote sample means. These X vectors may include transformations of an original set

of variables. Let β̂B be the OLS coefficient vector estimate. Let Y B = (Y B
1 , Y B

2 , . . . , Y B
nB

)′

be the column vector of observations Y B
i for i = 1, . . . , nB. Let XB be the matrix with row

i equal to the transpose of XB
i , so XB = (XB

1 ,X
B
2 , . . . ,X

B
nB

)′. The vector of residuals and

its orthogonality property are

ÛB ≡ Y B −XBβ̂B with (XB)′ÛB = 0. (A.1)

In the conventional Blinder–Oaxaca decomposition, the explained proportions in the

population and sample can respectively be written as

ρE ≡ ∆E

∆T

=
[E(XA) − E(XB)]′βB

E(Y A) − E(Y B)
=

E(XA)′βB − E(Y B)

E(Y A) − E(Y B)
,

ρ̂E =
(X̄A)′β̂B − Ȳ B

Ȳ A − Ȳ B
. (A.2)

It remains to show that the counterfactual distribution-based decomposition, when using

OLS to estimate linear probability models for each category of Y , yields a term identical to

(X̄A)′β̂B in the numerator of (A.2), as seen below.

Now consider the OLS estimates of the counterfactual CDF. Define indicators ZB
j ≡

1{Y B ≤ j} for j ∈ {1, . . . , J − 1}, so

Y B = J −
J−1∑
j=1

ZB
j . (A.3)
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Let γ̂B
j be the OLS coefficient vector estimate from regressing ZB

j on XB. Analogous to

Y B, let ZB
j be the vector of nB observations. For each j ∈ {1, . . . , J − 1}, the vector of

residuals and its orthogonality property are

V̂ B
j ≡ ZB

j −XBγ̂B
j with (XB)′V̂ B

j = 0. (A.4)

Using the above and the orthogonality property of OLS residuals, we can derive the

relationship between β̂B (from (A.1)) and the γ̂B
j . Assume the constant term is the first

element in vector XB; that is, XB = (1, . . .)′, so the first column of matrix XB is all ones.

Let e1 ≡ (1, 0, . . . , 0)′ have the same length as the γ̂B
j , and let 1 ≡ (1, . . . , 1)′ be a vector of

nB ones. Combining (A.3) and (A.4),

Y B = J1−
J−1∑
j=1

ZB
j = J1−

J−1∑
j=1

(XBγ̂B
j + V̂ B

j ) = XB

=β̂B︷ ︸︸ ︷(
Je1 −

J−1∑
j=1

γ̂B
j

)
+

J−1∑
j=1

(−V̂ B
j ),

where the equality

Je1 −
J−1∑
j=1

γ̂B
j = β̂B (A.5)

is implied by the orthogonality

(XB)′
J−1∑
j=1

(−V̂ B
j ) = −

J−1∑
j=1

=0︷ ︸︸ ︷
(XB)′V̂ B

j = 0, (A.6)

which follows from the orthogonality condition in (A.4).

Now consider the “mean” of the counterfactual distribution. Taking the expectation of

(A.3) and using the linearity of the expectation operator,

E(Y B) = J −
J−1∑
j=1

E(ZB
j ).
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Thus, the estimated counterfactual “mean” is

Ê(Y C) = J −
J−1∑
j=1

(X̄A)′γ̂B
j = (X̄A)′

=β̂B by (A.5)︷ ︸︸ ︷(
Je1 −

J−1∑
j=1

γ̂B
j

)
= (X̄A)′β̂B.

This final expression is identical to the term in the Blinder–Oaxaca decomposition numerator

in (A.2), so the estimated explained proportion is identical.

B Quantiles

Ordinal variables have a well-defined τ -quantile for any 0 ≤ τ ≤ 1. For any type of variable

Y , including ordinal, the τ -quantile is generally defined as

Qτ (Y ) ≡ inf{y : FY (y) ≥ τ}.

For example, if an ordinal variable has probability 40% of value “low,” 20% “medium,” and

40% “high,” then “medium” is the smallest value such that the CDF is at least 0.5, so

“medium” is the 0.5-quantile (median). Similarly, “low” is the smallest value such that the

CDF is at least 0.25, so “low” is the 0.25-quantile.

Given that, the actual and counterfactual τ -quantiles are all well-defined: Qτ (Y A),

Qτ (Y B), and Qτ (Y C). Reporting these can provide a sense of how much of the overall

difference is statistically explained by the covariates. Specifically, the closer Qτ (Y C) is to

Qτ (Y A) than to Qτ (Y B), the more is explained. These ordinal comparisons can also be

interpreted in terms of quantiles of latent distributions under certain conditions as shown

by Kaplan and Zhao (2023, §2.3).

However, without imposing cardinal values, the ∆ differences are not well-defined, nor are

their relative magnitudes like ∆E/∆T . For example, imagine Qτ (Y A) = 10, Qτ (Y C) = 8, and

Qτ (Y B) = 2. It is tempting to say that ∆τ
E = 8− 2 = 6 and ∆τ

T = 10− 2 = 8, so 6/8 = 75%

is explained, meaning the difference in the covariate distributions can statistically explain
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most of the overall difference. However, imagine the categories labeled 2 through 8 have

values “infinitesimal,” “negligible,” “minuscule,” “tiny,” “extremely small,” “very small,”

and “small,” followed by category 9 “medium” and category 10 “large.” Thus, the difference

between “infinitesimal” and “small” is explained, while the difference between “small” and

“large” is unexplained, suggesting that actually most of the difference is unexplained. That

is, the “75%” assumes the categories are all evenly spaced, but here clearly categories 2

through 8 are much closer in value than 8 through 10. In general, comparing the values of

Qτ (Y A), Qτ (Y B), and Qτ (Y C) can be insightful, but quantifying the differences generally

requires a subjective cardinalization.

Another limitation of quantile decomposition is that often Qτ (Y A) = Qτ (Y B) when J is

small. For example, in our depression data, the median is “none/minimal” in both urban

and rural groups, even though the proportion of each group in that category is significantly

different. Because of this discreteness of quantiles with ordinal data, the median (or other

typical quantiles) may not reveal any group difference in the first place, let alone provide

a precise decomposition. However, if the number of categories J is sufficiently large, then

quantile decomposition can be insightful.
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