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Abstract

The famous Blinder–Oaxaca decomposition estimates the statistically “explained”

proportion of a between-group difference in means, but ordinal variables have no mean.

A common approach assigns cardinal values 1, 2, 3, . . . to the ordinal categories and runs

the conventional OLS-based decomposition. Surprisingly, we show such results are nu-

merically identical to a decomposition of the survival function when estimating the

counterfactual using OLS-based distribution regression, even if the cardinalization is

wrong. Still, reporting the counterfactual helps transparency and wide-sense replica-

tion, and to mitigate functional form misspecification, we describe and implement a

nonparametric estimator. Empirically, we decompose U.S. rural–urban differences in

mental health.
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1 Introduction

The Blinder–Oaxaca decomposition is commonly used to decompose an overall mean dif-

ference in outcome between two groups into two components: one attributed to the group

difference in explanatory variable means, and the other to differences in regression coeffi-

cients. Using the same idea published by Kitagawa (1955) and used earlier in the 1940s (see

her footnote 3), the papers of Blinder (1973) and Oaxaca (1973) have over 20,000 citations in

Google Scholar, with over 6000 of those coming since 2019, spanning the fields of economics,

public health, sociology, medicine, demography, and others. The original papers decompose

wages by sex and/or race.

Unfortunately, this approach cannot be applied directly to ordinal outcome variables,

which are important in many social sciences like economics. An ordinal variable does not

have a well-defined mean because its values are ordered categories rather than numerical,

cardinal values. For example, individuals often rate their general health using the categories

poor, fair, good, very good, and excellent; such values cannot be averaged, unless we assign

a cardinal value to each category. In our empirical application, we decompose mental health

differences between urban and rural residents in the U.S., using a depression variable with

values none/minimal, mild, moderate, and severe. Besides health, ordinal variables are also

common for bond ratings, consumer confidence, political indices, and other outcomes.

Despite this importance of both decomposition and ordinal variables, there is a limited

literature on decomposition with ordinal outcomes. The extensive Handbook of Labor chap-

ter on “Decomposition Methods in Economics” (Fortin, Lemieux, and Firpo, 2011) includes

discussion of many population functionals and estimators and causal identification, but does

not include the word “ordinal” anywhere in its 102 pages. (And “ordered” only appears in

the context of parametric estimation of conditional distributions for a continuous outcome

after “discretizing the outcome variable” (p. 70).) Bauer and Sinning (2008) propose an

ordered probit/logit decomposition in their (4), but it is used only to introduce nonlinearity,

while still treating the ordinal outcome as if it were discrete with cardinal values 1, 2, 3, . . .;
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the same is true of Demoussis and Giannakopoulos (2007).1 Similarly, empirical work often

treats the numerically coded category labels (1, 2, 3, . . .) as cardinal values and then runs

the standard OLS-based Blinder–Oaxaca decomposition; for example, see Pan, Liu, and Ali

(2015, §2.4), Awaworyi Churchill, Munyanyi, Prakash, and Smyth (2020, §§2.1–2.2), and Pili-

piec, Groot, and Pavlova (2020, §2.2). Madden (2010, §2) acknowledges the cardinalization

is not fully appropriate (but facilitates variable-by-variable decomposition) and argues that

the ordered probit results in his appendix offer evidence of robustness, but his ordered pro-

bit decomposition still uses the same cardinalization (p. 111). Other empirical work simply

reduces the ordinal variable to a binary variable before doing a probit-based decomposition;

for example, see Zhang, Bago d’Uva, and van Doorslaer (2015, eqn. (7)) and Hauret and

Williams (2017, p. 217).

In this context, we make three contributions. Practically, we recommend a unified frame-

work based on Chernozhukov, Fernández-Val, and Melly (2013), first constructing a counter-

factual distribution and then decomposing one or more summary statistics. Theoretically,

we show that population decompositions using the common but dubious cardinalization

1, 2, 3, . . . can actually be interpreted meaningfully in terms of survival functions even if the

“mean” interpretation is wrong. Further, we show that the estimated Blinder–Oaxaca de-

composition with such a cardinalization is numerically equivalent to a counterfactual-based

survival function decomposition using OLS-based distribution regression. Empirically, we

apply the foregoing to decompose U.S. rural–urban mental health disparities.

Practically, we suggest that ordinal decompositions follow the approach of Chernozhukov,

Fernández-Val, and Melly (2013) to estimate a certain counterfactual outcome distribution,

after which summary statistics can be computed to estimate the “explained” proportion.

Although they consider a continuous outcome, so their quantile regression results do not

apply, their results based on distribution regression still hold for an ordinal outcome. From

a computational perspective, they first estimate models like their (3.1) where the dependent

1Their [7] and [8] have an important typo: the left-hand sides should have expectations of S rather than
probabilities, as is clear from the text (“expected JS”) and the right-hand sides, and equation [9] later.
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variable represents whether or not the ordinal outcome is at or below a certain category,

re-estimating the model for each such category, using probit or logit, or a nonparametric

alternative like series logit. This is essentially a generalization of the binary outcome de-

composition of Fairlie (2005) that traces back (at least) to Even and Macpherson (1990)

and Farber (1987); it is also more flexible than the ordered probit/logit decomposition of

Bauer and Sinning (2008, eqn. (4)), who additionally impose the 1, 2, 3, . . . cardinalization.

The counterfactual distribution of Chernozhukov, Fernández-Val, and Melly (2013) com-

bines the conditional outcome distribution from one group with the marginal distribution

of covariates from the other group, as in their (2.1). Qualitatively, the difference between

the first group and the counterfactual is the “explained” component, whereas the difference

between the counterfactual and the second group is the unexplained component. To simplify

communication of results, a particular summary statistic can be chosen.

Theoretically, first we show that choosing the summary statistic as the “mean” after

assigning cardinal values 1, 2, 3, . . . is equivalent to a summary statistic based only on the

survival function. Using such a cardinalization is temptingly convenient: often these values

are coded in the raw data, and treating them as cardinal allows use of conventional statisti-

cal methods like linear regression and the original Blinder–Oaxaca decomposition. However,

taken literally, this cardinalization is often inappropriate: it assigns the same value to every-

one within a category that more realistically represents a range of values, and it assumes the

cardinal difference between any two consecutive categories is identical. For example, in our

mental health application with our depression variable, it assigns the same cardinal value to

everyone in the “mild” category (which represents a range of individuals’ latent depression

levels), and it assumes the cardinal difference between “none” and “mild” is the same as

the difference between “mild” and “moderate” and the difference between “moderate” and

“severe.” Despite this, we show the “mean” decomposition can be interpreted as a decompo-

sition of the difference in survival functions averaged across categories. The survival function

is well-defined for any ordinal variable, without any cardinalization.
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With enough ordinal categories, the median and other quantile differences may also be

decomposed. Unlike the mean, all quantiles are well-defined for ordinal variables. Ordinal

quantile comparisons can also be interpreted in terms of quantiles of a latent variable under

certain conditions (Kaplan and Zhao, 2023, Thm 2.2). However, computing a “percent

explained” would still require cardinalization. For example, if the overall median difference on

a 24-point ordinal scale is from category 10 to category 20, and the counterfactual “explained”

median is category 18, then to call this “80% explained” implicitly assumes a constant

difference between each pair of consecutive categories. Here, reporting each group’s median

along with the counterfactual median helps transparency.

Our second theoretical contribution establishes a numerical equivalence between the esti-

mated explained proportion from the “naive” Blinder–Oaxaca decomposition (with 1, 2, 3, . . .

cardinalization) and a particular counterfactual-based estimate. Specifically, when using

OLS (linear probability model) for the distribution regressions and decomposing the sur-

vival function difference (averaged across categories), the estimated explained proportion is

identical to that from naive Blinder–Oaxaca decomposition, for any dataset. Importantly,

this allows us to reinterpret many naive Blinder–Oaxaca decomposition estimates in the

literature in a more sophisticated and robust way, in terms of a survival function decom-

position that does not rely on any cardinalization. That is, if we took the same data but

ran a survival function decomposition using the counterfactual from OLS-based distribution

regression, then our explained proportion would be exactly the same as those reported. Of

course, going forward, we may prefer to use a distribution regression estimator based on

logit or series logit rather than OLS, but only for the purpose of reducing functional form

misspecification.

In an earlier version of this work (Wu, 2023), a latent mean decomposition based on

heteroskedastic ordered probit was also explored. Although this seemed to be a novel idea,

it proved to be a bad idea: results were very sensitive to misspecification of both the het-

eroskedasticity function and the latent error distribution, whose assumed shape (Gaussian)
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cannot be tested consistently due to the unobserved nature of the latent model. This is

closely related to the arguments of Bond and Lang (2019), who criticize latent mean anal-

ysis with ordinal data for the same reason, showing how even the signs (+/−) of empirical

results from the happiness literature can be reversed by adding skew to the assumed latent

distribution. Further, unlike the “mean” decomposition above, the latent mean decomposi-

tion lacks a meaningful interpretation under misspecification. Thus, we do not recommend

latent mean decompositions.

Empirically, we examine the mental health disparity between urban and rural groups in

the U.S., decomposing the distribution difference attributed to education, age, sex, income,

and region. Our various model estimation methods attribute 33–39% of the mental health

difference to these factors. Additionally, we verify that the naive Blinder–Oaxaca decompo-

sition estimate is identical to the OLS-based counterfactual survival function decomposition.

Paper structure Section 2 describes the unified framework for ordinal decomposition

based on the counterfactual distribution, largely following Chernozhukov, Fernández-Val,

and Melly (2013). Section 3 contains our first equivalence, for the population decomposi-

tion. Section 4 describes estimation and inference, as well as our second equivalence result.

Section 5 contains our empirical contributions on rural–urban mental health disparities in

the U.S.

Notation and abbreviations Random and non-random vectors are respectively typeset

as, e.g., X and x, while random and non-random scalars are typeset as X and x, and random

and non-random matrices as X and x. The indicator function is 1{·}, with 1{A} = 1 if

event A occurs and 1{A} = 0 if not. Acronyms used include those for Akaike information

criterion (AIC), cumulative distribution function (CDF) linear probability model (LPM),

and National Health Interview Survey (NHIS).
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2 A unified framework

This section introduces the counterfactual distribution framework used for both our practi-

cal and theoretical contributions. Practically, we suggest any ordinal decomposition proceed

in two steps: first, follow the approach of Chernozhukov, Fernández-Val, and Melly (2013)

to construct a counterfactual distribution; second, choose a particular summary statistic to

decompose. This section describes the counterfactual distribution at the population level,

adapting the formulas of Chernozhukov, Fernández-Val, and Melly (2013) to ordinal out-

comes.

The following are the main variables and functions. Ordinal outcome Y is a random

variable with underlying categorical values like “low,” “medium,” and “high” that for no-

tational convenience are labeled as {1, 2, . . . , J}. Covariate vector X is a random vector

including an intercept and other explanatory variables. Cumulative distribution functions

(CDFs) have subscripts of the corresponding random variables: FY (·) for the CDF of Y ,

FX(·) for the CDF of X, and FY |X(· | x) for the conditional CDF of Y given X = x.

The survival function is the complement of the CDF: SY (y) ≡ P(Y > y), or equivalently

SY (·) = 1− FY (·). The two groups (populations) of interest are labeled A and B, generally

used as superscripts. Thus, for group A: Y A is the ordinal outcome with CDF FA
Y (·) and

survival function SA
Y (·), XA is the covariate vector with CDF FA

X(·) and support XA, and

FA
Y |X(· | ·) is the conditional CDF. For group B, the A superscripts are all replaced with B

superscripts. Similarly, a C superscript indicates the counterfactual distribution, introduced

below.

Following Chernozhukov, Fernández-Val, and Melly (2013, §2.1), the population-level

counterfactual distribution is defined as follows. The thought experiment is: starting from

group B, what if we keep fixed the conditional distribution but change the covariate distribu-

tion to that of group A? Thus, we can see how much of a change in the outcome distribution

is statistically explained purely from the difference in covariate distributions. Because Y is

ordinal with J categories, its distribution is fully characterized by the J − 1 values of FY (y)
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for y ∈ {1, . . . , J − 1}. Mathematically, as in (2.1) of Chernozhukov, Fernández-Val, and

Melly (2013) or (27) of Fortin, Lemieux, and Firpo (2011), the counterfactual CDF is

FC
Y (y) ≡

∫
XA

FB
Y |X(y | x) dFA

X(x), y ∈ {1, . . . , J − 1}. (1)

As in (2.3) of Chernozhukov, Fernández-Val, and Melly (2013), this requires XA ⊆ XB; if

instead XB ⊆ XA, then the A and B labels can be switched. For intuition about (1), consider

the extreme cases: if FA
X = FB

X , then (1) yields FC
Y (y) = FB

Y (y), and if FB
Y |X = FA

Y |X , then

(1) yields FC
Y (y) = FA

Y (y).

In principle, the full distributions FA
Y , F

B
Y , and FC

Y can be reported (and should be in

an appendix, at least), but this requires 3(J − 1) values total, so a summary can improve

communication and understanding of results. We consider scalar functionals s(·) in Section 3,

reducing the results to the three values s(FA
Y )− s(FB

Y ), s(FC
Y )− s(FB

Y ), and s(FA
Y )− s(FC

Y ),

which are the total, explained, and unexplained differences, respectively. The single value

[s(FC
Y )− s(FB

Y )]/[s(FA
Y )− s(FB

Y )] represents the explained proportion.

3 Summary statistic interpretations and equivalences

Continuing from the counterfactual distribution, we discuss decompositions based on differ-

ent summary statistics that we show yield identical explained proportions. Quantiles are

discussed in the online appendix. Everything in this section is still at the population level,

to describe and understand the interpretation of different possible population objects of

interest. Estimation and inference follow in Section 4.

Notationally, denote differences as ∆, with the total (subscript T ), explained (E), and

unexplained (U) differences respectively

∆T , ∆E, ∆U . (2)

8



3.1 Survival function

Consider a decomposition based on the survival function differences summed (or averaged)

across categories. Given survival functions SA(·) and SB(·), we summarize their difference

as
J∑

j=1

[SA(j)− SB(j)], (3)

and similarly for other pairs of survival functions. Summing from j = 1 to J−1 is equivalent

because SA(J) = SB(J) = 0. Taking the average (instead of sum) would multiply (3) by

1/J , but ultimately the explained proportion would remain identical because the 1/J would

cancel out in (5) below. Given (3), using the notation of (2) and adding superscript S for

“survival,” the corresponding differences are

∆S
T =

J∑
j=1

[SA(j)− SB(j)], ∆S
E =

J∑
j=1

[SC(j)− SB(j)], ∆S
U =

J∑
j=1

[SA(j)− SC(j)], (4)

and the explained proportion is

∆S
E

∆S
T

=

∑J
j=1[S

C(j)− SB(j)]∑J
j=1[S

A(j)− SB(j)]
. (5)

3.2 CDF

The explained proportion for a CDF-based decomposition is identical to (5). The components

in (4) equal the negative of their CDF-based analogs. For example,

∆S
T =

J∑
j=1

[SA(j)− SB(j)] =
J∑

j=1

{[1− FA(j)]− [1− FB(j)]} = −
J∑

j=1

[FA(j)− FB(j)],

and similarly for the other differences in (4). Thus, the explained proportion remains the

same because (−∆S
E)/(−∆S

T ) = ∆S
E/∆

S
T .
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3.3 “Mean”

Consider the convenient “mean” decomposition often used in practice. That is, assume

the numeric category labels 1, 2, . . . , J are actually cardinal values. As discussed in the

introduction, if taken literally, this is a very strong assumption that is often doubtful in

practice. However, it turns out to be equivalent to the survival function-based decomposition

in (4) and (5), which has a meaningful interpretation without requiring any cardinalization.

To see this, using the labels as cardinal values, the “mean” of ordinal Y is

E(Y ) =
J∑

j=1

j P(Y = j)

= P(Y = 1) + 2P(Y = 2) + · · ·+ J P(Y = J)

=

=1︷ ︸︸ ︷
[P(Y = 1) + P(Y = 2) + · · ·+ P(Y = J)]

+ [

=SY (1)︷ ︸︸ ︷
P(Y = 2) + · · ·+ P(Y = J)]

+ · · ·

+ [

SY (J−1)︷ ︸︸ ︷
P(Y = J)]

= 1 +
J−1∑
j=1

SY (j)

= 1 +
J∑

j=1

SY (j),

with the final equality because SY (J) ≡ P(Y > J) = 0. Taking differences, the 1s always

cancel out, yielding the expressions in (4) exactly. For example, using superscript µ for

“mean,”

∆µ
T ≡ E(Y A)−E(Y B) = [1 +

J∑
j=1

SA
Y (j)]− [1 +

J∑
j=1

SB
Y (j)] =

J∑
j=1

[SA
Y (j)− SB

Y (j)] = ∆S
T , (6)

and similarly ∆µ
E = ∆S

E and ∆µ
U = ∆S

U , implying the explained proportion also remains the

same: ∆µ
E/∆

µ
T = ∆S

E/∆
S
T .
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Theorem 1 states the core equivalence in general terms.

Theorem 1. Let W and Z be discrete random variables with possible values {1, 2, . . . , J}.

Then, E(W ) = 1 +
∑J

j=1 SW (j) and E(W )− E(Z) =
∑J

j=1[SW (j)− SZ(j)], where SW (j) ≡

P(W > j) and SZ(j) ≡ P(Z > j) are the survival functions.

Proof. See derivation of (6), replacing Y A with W and Y B with Z.

Theorem 1 implies that, serendipitously, we can interpret a “mean” decomposition as a

survival function decomposition. That is, if a paper reports results for an ordinal “mean”

decomposition, then even if we disagree with the “mean” interpretation, we can still agree

about the relative magnitude of explained and unexplained components.

3.4 Implications for regression-based decomposition

Theorem 1 applies to the usual regression-based decomposition, with the usual caveats about

functional form misspecification. To start, consider the general nonparametric conditional

“mean” model Y B = mB(XB) + UB with mB(x) ≡ E(Y B | XB = x) so E(UB | XB) = 0.

From Theorem 1, we can interpret E(Y B | XB = x) in terms of conditional survival functions

as 1 +
∑J

j=1 S
B
Y |X(j | x); that is, the nonparametric regression describes how this sum of

conditional survival function values varies with x. The counterfactual mean is E(Y C) =

E[mB(XA)], which by Theorem 1 can be interpreted in terms of the sum of counterfactual

survival function values. The decomposition is thus

E(Y A)− E(Y B) =

unexplained︷ ︸︸ ︷
E(Y A)− E[mB(XA)]︸ ︷︷ ︸

E(Y C)

+

explained︷ ︸︸ ︷
E[mB(XA)]︸ ︷︷ ︸

E(Y C)

−E(Y B) . (7)

By Theorem 1, the decomposition in (7) can be interpreted in terms of survival functions.

Thus, a nonparametric regression-based “mean” decomposition always has a survival func-

tion interpretation, without any assumption about cardinalization.

Theorem 1 can also be used to interpret Blinder–Oaxaca decompositions using linear

regression. If we have a properly specified linear model mB(x) = x′βB and mA(x) = x′βA,
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then (7) takes the familiar Blinder–Oaxaca form

E(Y A)− E(Y B) = E[mA(XA)]− E[mB(XA)] + E[mB(XA)]− E[mB(XB)]

= E[XA′βA]− E[XA′βB] + E[XA′βB]− E[XB′βB)]

=

unexplained︷ ︸︸ ︷
E(XA)′(βA − βB)+

explained︷ ︸︸ ︷
[E(XA)− E(XB)]′βB . (8)

If the linear model is misspecified, then we can interpret it as the “best linear approxima-

tion” of the conditional mean function (e.g., Kaplan, 2022, §7.4), although “best” does not

necessarily mean “good.” In that case, the counterfactual “mean” E(Y C) is approximated

by E[mB(XA)]. Approximation or not, the population regression-based decomposition of

“means” can be interpreted as a decomposition of survival functions.

Section 4.2 shows how this population equivalence extends to estimation.

4 Estimation and inference

Sections 4.1 and 4.3 essentially follow the estimation and inference of Chernozhukov, Fernández-

Val, and Melly (2013). Theoretically, ordinal Y is simpler than continuous Y (as in their

paper) because there are only J − 1 values at which we need to estimate the counterfactual

CDF, rather than a continuum of an infinite number of points. Thus, their asymptotic re-

sults all hold. Our first contribution in this section is to gather practical guidance, which we

follow in our provided code.

Our second contribution is the new equivalence result in Section 4.2.

4.1 Estimation

The distribution regression model as in (3.1) of Chernozhukov, Fernández-Val, and Melly

(2013) separately models the conditional CDF evaluated at each y ∈ {1, . . . , J − 1} in turn.

Let Λ(·) be the link function, such as the standard normal or logistic CDF. Let P (x) be
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a vector of transformations of the original covariate vector x; for example, it can include

squares, interactions, higher-degree polynomial terms, or other basis functions like B-splines.

Let γy be the coefficient vector corresponding to category y ∈ {1, . . . , J − 1}. Then, the

model is

FY |X(y | x) = Λ
(
P (x)′γy

)
, y ∈ {1, . . . , J − 1}. (9)

Chernozhukov, Fernández-Val, and Melly (2013, p. 2217) note the link function Λ(·) is not

as important as having a sufficiently flexible P (x). A popular choice of estimator is the

series logit from Hirano, Imbens, and Ridder (2003, p. 1170), where Λ(·) is the logistic CDF

and P (x) contains polynomials or other basis function transformations. Model selection

techniques such as cross-validation can be used to select an appropriately flexible (but not

too flexible) model in practice. More on basis expansions and model selection can be found

in textbooks like that of Hastie, Tibshirani, and Friedman (2009, Chs. 5 and 7).

The model in (9) is estimated using (only) data from group B, yielding γ̂B
y for y ∈

{1, . . . , J − 1}. Weights can be used as appropriate. For given y and x values, the estimated

conditional CDF is F̂B
Y |X(y | x) = Λ

(
P (x)′γ̂B

y

)
.

The estimated conditional CDF for group B is then plugged into the counterfactual dis-

tribution formula from (1) along with the estimated marginal distribution of XA. Without

sampling weights, integrating against F̂A
X is equivalent to averaging over the sample val-

ues of XA, so the estimated counterfactual CDF is as given at the end of Remark 3.1 of

Chernozhukov, Fernández-Val, and Melly (2013):

F̂C
Y (y) =

∫
XA

F̂B
Y |X(y | x) dF̂A

X(x) =
1

nA

nA∑
i=1

Λ
(
P (XA

i )
′γ̂B

y

)
, y ∈ {1, . . . , J − 1}, (10)

where XA
i are the observations in the group A sample for i = 1, . . . , nA; see also page 71

of Fortin, Lemieux, and Firpo (2011). If there are weights, then a weighted average can be

taken:
nA∑
i=1

w̃A
i Λ
(
P (XA

i )
′γ̂B

y

)
,

13



where w̃A
i ≡ wA

i /
∑nA

i=1 w
A
i normalizes the original weights wA

i to sum to 1; the unweighted

formula above is the special case with w̃A
i = 1/nA for all i.

The actual group A and B outcome distributions can be estimated with the usual esti-

mators. Without weights, for each y ∈ {1, . . . , J − 1},

F̂A
Y (y) =

1

nA

nA∑
i=1

1{Y A
i ≤ y}, F̂B

Y (y) =
1

nB

nB∑
i=1

1{Y B
i ≤ y},

where the Y A
i are observations from the group A sample for i = 1, . . . , nA, and the Y B

i are

observations from the group B sample for i = 1, . . . , nB. With weights, similar to above,

F̂A
Y (y) =

nA∑
i=1

w̃A
i 1{Y A

i ≤ y}, F̂B
Y (y) =

nB∑
i=1

w̃B
i 1{Y B

i ≤ y},

where again w̃A
i ≡ wA

i /
∑nA

i=1 w
A
i and similarly w̃B

i ≡ wB
i /
∑nB

i=1w
B
i normalize the raw weights

to sum to one in each sample.

Given the three estimated CDFs F̂A
Y , F̂

B
Y , and F̂C

Y , the desired summary statistic can

be computed from each, and then the decomposition components. Letting s(·) denote the

function that computes the scalar summary statistic,

∆̂T = s(F̂A
Y )− s(F̂B

Y ), ∆̂E = s(F̂C
Y )− s(F̂B

Y ), ∆̂U = s(F̂A
Y )− s(F̂C

Y ),

and the estimated explained proportion is ∆̂E/∆̂T .

4.2 Another equivalence

Here, we establish a numerical equivalence between two seemingly very different estimators

of the explained proportion of a decomposition. The first estimator uses the survival function

decomposition in (5), where the counterfactual distribution is estimated as in Section 4.1

using the identity link function Λ(a) = a (i.e., by OLS with a linear probability model). The

second estimator naively applies the conventional OLS-based Blinder–Oaxaca decomposition

of the “mean,” interpreting the coding Y ∈ {1, . . . , J} as cardinal values.

This equivalence says that we can now more robustly and meaningfully reinterpret pub-
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lished results based on seemingly inappropriate application of Blinder–Oaxaca decomposi-

tion to ordinal outcomes. Specifically, even if the paper dubiously claims to decompose the

“mean” of an ordinal outcome, we can interpret the estimated explained proportion in terms

of survival functions and a counterfactual distribution that does not depend on any par-

ticular cardinalization. Although other estimators may help reduce misspecification when

estimating the counterfactual, using the naive Blinder–Oaxaca estimate may still be useful

for initial exploratory analysis.

Theorem 2. Assuming both are well-defined given the data, the following two estimates of

the explained proportion are numerically identical. First estimate: after coding Y with cardi-

nal values Y ∈ {1, 2, . . . , J}, estimate the conventional Blinder–Oaxaca mean decomposition

in (8), specifically the explained proportion

(X̄A − X̄B)′β̂B

Ȳ A − Ȳ B
,

where as usual β̂B is the OLS-estimated coefficient vector from regressing Y on X in sample

B. Second estimate: take the survival function decomposition’s estimated explained propor-

tion ∑J
y=1[Ŝ

C(y)− ŜB(y)]∑J
y=1[Ŝ

A(y)− ŜB(y)]

as in (5), and compute ŜC(·) with the counterfactual distribution estimator in (10) with the

special case Λ(x) = x and P (x) = x, with γ̂B
y estimated by OLS regression of Zy ≡ 1{Y ≤ y}

on X using data sample B.

Proof. Recall from Theorem 1 that decomposing the “mean” is equivalent to decompos-

ing the average survival function difference; below, we use the “mean” for simplicity. For

example, Theorem 1 allows us to write

1
J

∑J
y=1[Ŝ

C(y)− ŜB(y)]

1
J

∑J
y=1[Ŝ

A(y)− ŜB(y)]
=

Ȳ C − Ȳ B

Ȳ A − Ȳ B
,

where Ȳ A and Ȳ B are the sample means when coding Y with cardinal values {1, 2, . . . , J},
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and Ȳ C is similarly the mean of the estimated counterfactual distribution F̂C with the same

cardinal values.

Consider the standard Blinder–Oaxaca decomposition with the following notation. Let

Ȳ A and Ȳ B denote the two sample means when coding Y ∈ {1, 2, . . . , J}. Let X̄A and X̄B

also denote sample means. These X vectors may include transformations of an original set

of variables. Let β̂B be the OLS coefficient vector estimate. Let Y B = (Y B
1 , Y B

2 , . . . , Y B
nB

)′

be the column vector of observations Y B
i for i = 1, . . . , nB. Let X

B be the matrix with row

i equal to the transpose of XB
i , so XB = (XB

1 ,X
B
2 , . . . ,X

B
nB

)′. The vector of residuals and

its orthogonality property are

ÛB ≡ Y B −XBβ̂B with (XB)′ÛB = 0. (11)

In the conventional Blinder–Oaxaca decomposition like in (8), the explained proportions

in the population and sample can respectively be written as

ρE ≡ ∆E

∆T

=
[E(XA)− E(XB)]′βB

E(Y A)− E(Y B)
=

E(XA)′βB − E(Y B)

E(Y A)− E(Y B)
,

ρ̂E =
(X̄A)′β̂B − Ȳ B

Ȳ A − Ȳ B
. (12)

It remains to show that the counterfactual distribution-based decomposition, when using

OLS to estimate linear probability models for each category of Y , yields a term identical to

(X̄A)′β̂B in the numerator of (12), as seen below.

Now consider the OLS estimates of the counterfactual CDF. Define indicators ZB
j ≡

1{Y B ≤ j} for j ∈ {1, . . . , J − 1}, so

Y B = J −
J−1∑
j=1

ZB
j . (13)

Let γ̂B
j be the OLS coefficient vector estimate from regressing ZB

j on XB. Analogous to

Y B, let ZB
j be the vector of nB observations. For each j ∈ {1, . . . , J − 1}, the vector of
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residuals and its orthogonality property are

V̂ B
j ≡ ZB

j −XBγ̂B
j with (XB)′V̂ B

j = 0. (14)

Using the above and the orthogonality property of OLS residuals, we can derive the

relationship between β̂B (from (11)) and the γ̂B
j . Assume the constant term is the first

element in vector XB; that is, XB = (1, . . .)′, so the first column of matrix XB is all ones.

Let e1 ≡ (1, 0, . . . , 0)′ have the same length as the γ̂B
j , and let 1 ≡ (1, . . . , 1)′ be a vector of

nB ones. Combining (13) and (14),

Y B = J1−
J−1∑
j=1

ZB
j = J1−

J−1∑
j=1

(XBγ̂B
j + V̂ B

j ) = XB

=β̂B︷ ︸︸ ︷(
Je1 −

J−1∑
j=1

γ̂B
j

)
+

J−1∑
j=1

(−V̂ B
j ),

where the equality

Je1 −
J−1∑
j=1

γ̂B
j = β̂B (15)

is implied by the orthogonality

(XB)′
J−1∑
j=1

(−V̂ B
j ) = −

J−1∑
j=1

=0︷ ︸︸ ︷
(XB)′V̂ B

j = 0, (16)

which follows from the orthogonality condition in (14).

Now consider the “mean” of the counterfactual distribution. Taking the expectation of

(13) and using the linearity of the expectation operator,

E(Y B) = J −
J−1∑
j=1

E(ZB
j ).

Thus, the estimated counterfactual “mean” is

Ê(Y C) = J −
J−1∑
j=1

(X̄A)′γ̂B
j = (X̄A)′

=β̂B by (15)︷ ︸︸ ︷(
Je1 −

J−1∑
j=1

γ̂B
j

)
= (X̄A)′β̂B.

This final expression is identical to the term in the Blinder–Oaxaca decomposition numerator
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in (12), so the estimated explained proportion is identical.

4.3 Inference

Inference for the ∆ components can use the bootstrap in Algorithm 2 of Chernozhukov,

Fernández-Val, and Melly (2013). Their bootstrap (and the corresponding theory) is for

s(F̂C
Y ). For s(·) like the “mean,” analytic confidence intervals may be readily available, or as

long as the bootstrap is being run anyway, they can be bootstrapped, too. The Algorithm 2

bootstrap is a very general exchangeable weight bootstrap that includes the usual bootstrap

as a special case. Per their Remark 5.1, the bootstrap weights (or resamples) should be done

separately and independently for groups A and B. Given each bootstrap weight vector or

sample, the full estimation procedure from Section 4.1 is run, and this is repeated many

times. The many bootstrap-world estimates of the ∆ components can then be used in any

standard bootstrap confidence interval formula as desired.

5 Empirical results: mental health disparities

We illustrate the preceding approaches through an empirical analysis of rural–urban mental

health disparity in the U.S. Specifically, we decompose the overall rural–urban difference in

depression using age, sex, education, income, and region. The analysis was performed in R

(R Core Team, 2022), with help from the oaxaca package (Hlavac, 2022). Code to replicate

our results is available online.2

5.1 Data

We use the publicly available NHIS 2022 data (National Center for Health Statistics, 2022),

chosen for its inclusion of mental health assessment and recent availability. Our analysis

2https://qianjoewu.github.io/
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targets individuals aged 24–64, focusing on those of working age and surpassing the average

age at college graduation in the U.S.

The following variables are used. The outcome variable Y (PHQCAT_A) measures the

severity of depressive symptoms, summarizing the eight-item Patient Health Questionnaire

into four categories from low to high: “none/minimal,” “mild,” “moderate,” and “severe.”

The rural and urban groups are defined using variable URBRRL: group A contains individuals

who live in counties categorized as nonmetropolitan, while group B is large central metro

counties. The vector of explanatory variables X includes education (EDUCP_A), sex (SEX_A),

age (AGEP_A), squared age, family income (POVRATTC_A), and geographic region (REGION

). The estimation uses the sampling weight variable (WTFA_A). We drop 282 observations

(3.4%): those for which either age or urban group is missing, and those that fit our age

and urban group restrictions but have another variable value missing. This leaves 7902

observations for our analysis.

Figure 1 shows a mosaic plot to visualize the distribution of depression levels for rural

and urban groups. There are nA = 2448 individuals in group A (rural) and nB = 5454

in group B (urban), whose relative sizes correspond to the relative widths of the rural and

urban bars in the plot. Further, the area of each cell (rectangle) is proportional to the sample

proportion of such individuals, which is shown on the label; for example, rural individuals

with mild depression constitute 4.53% of the overall sample. Each bar indicates the sample

proportion. In each group, the stacked bar height represents the conditional probability

of each depression category, with splits indicating CDF values. For example, within the

rural bar, from bottom to top, these splits indicate F̂A
Y (1), F̂

A
Y (2), and F̂A

Y (3), respectively.

The figure shows that the rural group first-order stochastically dominates the urban group

in depression level in the sample because the rural CDF is below the urban CDF at each

category: F̂A
Y (j) ≤ F̂B

Y (j) at each j ∈ {1, 2, 3, 4}. This suggests that overall the rural group

has higher levels of depression (worse mental health) than the urban group.
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Figure 1: Urban and rural depression level distributions.

20



5.2 Estimation

To construct the counterfactual distribution for the rural group, we use distribution regres-

sion with three estimation methods: OLS with a linear probability model (LPM), logit, and

nonparametric series logit.

For LPM/OLS and logit estimation, we include the following explanatory variables: a

dummy variable for high education (equal to 1 if the individual has at least some college

education), sex, age, squared age, income (family poverty ratio: family income divided by

poverty threshold), a dummy variable for “high income” that equals 1 if the family poverty

ratio has been top-coded (value 11), and region dummies for the Northeast, Midwest, and

West (with South the base group).

For series logit estimation, we use the following model selection procedure. We run the

procedure separately for each dependent variable 1{Y ≤ y}, y ∈ {1, 2, 3}. The higher-order

terms lack a natural ordering, so technically we do not use “series” logit because we consider

many non-nested subsets of higher-order terms as candidate models. First, in every candidate

model, we include a linear term for each explanatory variable described above. Second, we

construct a candidate model for every possible combination of the quadratic terms, which

include squared age, squared income, and interaction terms like high education*age. Third,

we conduct logit estimation for each candidate model and compute the AIC (Akaike, 1974).

Fourth, we select the model with the lowest AIC as the optimal model. Fifth, we consider

adding certain cubic terms if the corresponding quadratic terms are included in the selected

model, and consider adding quartic terms if the cubic terms are selected, etc.

In practice, due to computational constraints, in addition to linear terms we include

age*income, age*high income, squared age, and squared income in every candidate model.

Each of the 22 additional quadratic terms may be included or excluded, yielding 222 =

4,194,304 candidate models. The selected model is different for each dependent variable

1{Y ≤ y}.3 For each 1{Y ≤ y}, adding cubed income and/or cubed age to the selected

3Beyond the baseline terms (high education, sex, age, income, high income, Northeast, Midwest, West,
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quadratic model resulted in worse (higher) AIC, so we use the selected quadratic models for

estimation.

In our decomposition result, we include bootstrapped standard errors, which were com-

puted using the procedure outlined by Hlavac (2022, §2.4) and described here in Method 1.

Method 1. [bootstrapped standard errors]

1. Take R random samples with replacement from the relevant set of observations, sepa-

rately and independently for groups A and B (per Section 4.3).

2. In each approach, estimate and perform the decomposition for the sample from Step 1.

3. Calculate the bootstrapped standard error as the standard deviation of the R decompo-

sition estimates from Step 2.

We use R = 1000.

5.3 Results

We decompose the “mean” difference between rural group A and urban group B, equivalent

to decomposing the survival function per Theorem 1. We use the three estimators in Sec-

tion 5.2 as well as the naive conventional Blinder–Oaxaca decomposition estimator, to verify

out Theorem 2.

Table 1 displays the estimated rural, urban, and counterfactual CDFs. For the counter-

factual, the estimated CDF values are similar across estimators, particularly OLS and logit.

This suggests that OLS provides a reasonable approximation here, and with computation

time in seconds instead of hours. At minimum, OLS seems very practical for exploratory

analysis, although for the final analysis a nonparametric estimator like series logit may be

preferred.

age*income, age*high income, squared age, and squared income), the selected model with dependent variable
1{Y ≤ 1} includes high education*age, high education*income, high education*high income, sex*income,
sex*Northeast, age*West, income*Midwest; the selected model with 1{Y ≤ 2} includes high education*sex,
high education*Northeast, sex*age, age*Midwest, and income*Northeast; and the selected model with 1{Y ≤
3} includes sex*income, income*Midwest, high income*Northeast, and high income*West.
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Table 1: Estimated actual and counterfactual CDFs.

Group F̂ (1) F̂ (2) F̂ (3)

Rural 0.751 0.906 0.958
Urban 0.804 0.938 0.976
Counterfactual (OLS/LPM) 0.789 0.925 0.968
Counterfactual (logit) 0.790 0.926 0.968
Counterfactual (series logit) 0.786 0.923 0.968

Table 2: Decomposition results.

Model Explained (%) Unexplained (%)

Naive Blinder–Oaxaca 33.9 66.1
(12.5) (12.5)

OLS/LPM 33.9 66.1
(12.5) (12.5)

Logit 33.0 67.0
(12.6) (12.6)

Series logit 38.9 61.1
(13.8) (13.8)

Bootstrapped standard errors are in parentheses.

Table 2 displays the decomposition results. Given the similar counterfactual CDF esti-

mates in Table 1, naturally the explained proportion estimates are also similar, all in the

range of 33–39 percent. This suggests that education, sex, age, income, and region collec-

tively account for approximately 33–39 percent of the difference in the depression distribution

between the rural and urban groups. This is a substantial amount, but still leaves over half

unexplained.

To verify Theorem 2, we also compute the naive Blinder–Oaxaca decomposition using the

1, 2, 3, . . . cardinalization. As expected, compared to the OLS counterfactual approach, the

decomposition results are identical. Thus, even if researchers reported only the conventional

Blinder–Oaxaca decomposition with this data, we could still interpret the results in terms

of a survival function decomposition with a counterfactual CDF estimated by distribution

regression, robust to any alternative cardinalization.
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6 Conclusion

For decomposition analysis with ordinal outcomes, we have shown that the naive OLS-

based Blinder–Oaxaca decomposition with outcomes coded with values 1, 2, 3, . . . can be

interpreted as a more sophisticated and robust decomposition of the survival function without

any assumed cardinalization. This allows any such empirical results in the literature to be

reinterpreted more meaningfully, and it suggests such “naive” OLS decomposition provides

a practical tool for exploratory analysis. We also show how to implement a nonparametric

estimator in our empirical application. In all, we provide a unified framework for ordinal

decomposition that can be applied to a wide range of ordinal outcomes across economics,

public health, medicine, sociology, and other social sciences.
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Online appendix for
“Ordinal Decomposition”

Qian Wu David M. Kaplan

May 30, 2024

A Quantiles

Ordinal variables have a well-defined τ -quantile for any 0 ≤ τ ≤ 1. For any type of variable

Y , including ordinal, the τ -quantile is generally defined as

Qτ (Y ) ≡ inf{y : FY (y) ≥ τ}.

For example, if an ordinal variable has probability 40% of value “low,” 20% “medium,” and

40% “high,” then “medium” is the smallest value such that the CDF is at least 0.5, so

“medium” is the 0.5-quantile (median). Similarly, “low” is the smallest value such that the

CDF is at least 0.25, so “low” is the 0.25-quantile.

Given that, the actual and counterfactual τ -quantiles are all well-defined: Qτ (Y
A),

Qτ (Y
B), and Qτ (Y

C). Reporting these can provide a sense of how much of the overall

difference is statistically explained by the covariates. Specifically, the closer Qτ (Y
C) is to

Qτ (Y
A) than to Qτ (Y

B), the more is explained. These ordinal comparisons can also be

interpreted in terms of quantiles of latent distributions under certain conditions as shown

by Kaplan and Zhao (2023).

However, without imposing cardinal values, the ∆ differences are not well-defined, nor are

their relative magnitudes like ∆E/∆T . For example, imagine Qτ (Y
A) = 10, Qτ (Y

C) = 8, and

Qτ (Y
B) = 2. It is tempting to say that ∆τ

E = 8− 2 = 6 and ∆τ
T = 10− 2 = 8, so 6/8 = 75%

is explained, meaning the difference in the covariate distributions can statistically explain

most of the overall difference. However, imagine the categories labeled 2 through 8 have

values “infinitesimal,” “negligible,” “minuscule,” “tiny,” “extremely small,” “very small,”

1



and “small,” followed by category 9 “medium” and category 10 “large.” Thus, the difference

between “infinitesimal” and “small” is explained, while the difference between “small” and

“large” is unexplained, suggesting that actually most of the difference is unexplained. That

is, the “75%” assumes the categories are all evenly spaced, but here clearly categories 2

through 8 are much closer in value than 8 through 10. In general, comparing the values of

Qτ (Y
A), Qτ (Y

B), and Qτ (Y
C) can be insightful, but quantifying the differences generally

requires a subjective cardinalization.

Another limitation of quantile decomposition is that often Qτ (Y
A) = Qτ (Y

B) when J is

small. For example, in our depression data, the median is “None/minimal” in both urban

and rural groups, even though the proportion of each group in that category is significantly

different. Because of this discreteness of quantiles with ordinal data, the median (or other

typical quantiles) may not reveal any group difference in the first place, let alone provide

a precise decomposition. However, if the number of categories J is sufficiently large, then

quantile decomposition can be insightful.
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