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Abstract

We develop methodology for testing stochastic monotonicity when the outcome

variable is ordinal. Rather than testing a single null hypothesis, we use multiple testing

to evaluate where the ordinal outcome is stochastically increasing in the covariate. By

inverting our multiple testing procedure that controls the familywise error rate, we

construct “inner” and “outer” confidence sets for the true set of points consistent

with stochastic increasingness. Simulations show reasonable finite-sample properties.

Empirically, we apply our methodology to the relationship between mental health and

education. Practically, we provide code implementing our multiple testing procedure

and replicating our empirical results.

JEL classification: C25, I10

Keywords: familywise error rate, confidence set, mental health

1 Introduction

One fundamental empirical question is whether a variable Y is “increasing” in a covariate

X, which can be characterized in terms of stochastic monotonicity. For example, is mental

health increasing in education? Variable Y is stochastically increasing in X if for any two

X values, the conditional distribution of Y at the higher X value first-order stochastically

dominates the conditional distribution of Y at the lower X value. Economically, this means

the conditional distribution of Y is “better” at higher X values, in the sense of higher

expected utility. However, because this is a strong property, it can be statistically difficult
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to find strong evidence in its favor, and conversely it may nearly hold but be rejected for a

small violation.

We contribute to the stochastic monotonicity inference literature by proposing and justi-

fying new methodology that focuses on ordinal outcomes and multiple testing. Economists

study ordinal outcomes in a variety of fields, using variables like general health (from the

lowest category “poor” up to “excellent”), mental health, bond ratings, education level,

consumer confidence, subjective well-being, and school ratings. However, other stochastic

monotonicity tests (see below) assume a continuous outcome and only test a single null

hypothesis of global stochastic monotonicity.

Instead of testing the single null hypothesis that Y is stochastically increasing in X, we

consider multiple testing of the conditional CDF inequalities that jointly comprise stochastic

increasingness. Specifically, each inequality checks whether the conditional CDF of Y is

decreasing as X increases to the next-highest value, over all categories of Y and a finite

number of X values.

Complementing global testing of a single null (which in principle can have better power

against certain alternatives), multiple testing addresses the aforementioned statistical con-

cerns in the following ways. First, if stochastic increasingness is rejected, multiple testing

shows more precisely whether many inequalities are rejected, or only a few, or even just one.

Second, if stochastic increasingness is not rejected, then multiple testing can be used on

the reversed inequalities (conditional CDF increasing with X) to see if they can be rejected

in favor of the original inequalities (decreasing with X). This gathers stronger statistical

evidence in favor of stochastic increasingness than simply failing to reject the original null

hypothesis, because type II error rates (false non-rejection) are not controlled. For example,

non-rejection may occur due to small sample size (high statistical uncertainty) even if the

point estimate suggests the null hypothesis is false.

Additionally, our multiple testing procedure can be inverted into “inner” and “outer”

confidence sets. The inner confidence set contains all points at which the reversed inequalities
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have been rejected, i.e., where there is strong evidence in favor of the original inequality

consistent with stochastic increasingness. The outer confidence set contains all points at

which the original inequalities have not been rejected. Such confidence sets are similar

to those of Kaplan (2023) and to equation (1) of Armstrong and Shen (2015). The inner

confidence set can be seen as a conservative estimator of the true set of inequalities consistent

with stochastic increasingness, in that the inner set is contained within the true set with high

asymptotic probability. Conversely, the outer set contains the true set with high asymptotic

probability.

Our empirical application studies mental health, an important topic of increasing inter-

est, specifically the relationship between depression and education. Our methodology finds

points with strong evidence in favor of mental health stochastically increasing with edu-

cation (depression stochastically decreasing with education), or strong evidence against it.

Given our observational data, our analysis is descriptive rather than causal, but it shows an

interesting pattern. Generally, we reject that individuals with higher education have worse

mental health in favor of the alternative that they have better mental health (lower depres-

sion). However, this is not true when comparing high-school graduates with individuals who

have some college but not a bachelor’s degree. Not only can we not reject in favor of lower

depression, but we reject lower depression in favor of higher depression for the some-college

individuals, specifically a higher proportion with mild-or-worse depression and a higher pro-

portion with moderate-or-worse depression. Because we control the familywise error rate,

there is no concern that these rejections are simply artifacts of testing so many combinations

of education level and depression category.

Besides intrinsic interest in settings like the education gradient in health or intergen-

erational transmission/mobility (a child’s outcome Y compared to their parent’s outcome

X), stochastic monotonicity also appears in certain identifying assumptions or as a testable

implication thereof. For example, stochastic monotonicity is implied by the combination

of (semi-)monotone treatment response and exogenous treatment selection, as discussed by

3



Manski (1997, §3.4). As another example, Small, Tan, Ramsahai, Lorch, and Brookhart

(2017) identify a weighted average treatment effect (and partially identify the average treat-

ment effect) when the treatment is stochastically increasing in the instrument. Although

testing is trivial in the binary–binary setting they focus on, our methodology would be use-

ful for testing their stochastic monotonicity identifying assumption when the treatment and

instrument are ordinal or discrete.

Our methodology contributes to the literature on stochastic monotonicity and multi-

ple testing. Inference on stochastic monotonicity has focused on continuous Y and testing

the single hypothesis of global stochastic monotonicity; for example, see Lee, Linton, and

Whang (2009), Seo (2018), and Chetverikov, Liao, and Chernozhukov (2021). Our reversing

the direction of null hypothesis inequalities to find stronger evidence in favor of stochastic

increasingness is inspired by Davidson and Duclos (2013), who make a related argument for

testing the null of non-dominance against the alternative of stochastic dominance, which can

be seen as a special case of stochastic monotonicity with binary X. Although we emphasize

multiple testing, testing the set of stochastic monotonicity inequalities jointly would fit in

the (moment) inequality literature; we essentially follow the least favorable approach with a

max-t statistic as in Section 4 (especially 4.1.1) of Canay and Shaikh (2017), whose survey

includes additional references. Our proof strategies are also similar to those of Zhao (2023),

who instead considers multiple testing of a function’s value across a finite set of points.

Kaplan and Zhao (2023) also use multiple testing with ordinal variables, but they only com-

pare two (unconditional) distributions and focus not on ordinal categories but on a latent

variable’s quantiles. Surveys of the multiple testing literature can be found in Lehmann and

Romano (2005b) and Romano, Shaikh, and Wolf (2010).

Paper structure Section 2 describes the setting, assumptions, methodology, and asymp-

totic properties. Section 3 applies our methodology empirically to mental health and ed-

ucation. Section 4 presents simulation results. Appendix A collects proofs. Appendix B
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contains an additional empirical application with general health.

Notation and abbreviations Random and non-random vectors are respectively typeset

as, e.g., X and x, while random and non-random scalars are typeset as X and x, and random

and non-random matrices as X and x. The indicator function is 1{·}, with 1{A} = 1 if

event A occurs and 1{A} = 0 if not. “ ⇐⇒ ” means if and only if. Acronyms used include

those for confidence set (CS), continuous mapping theorem (CMT), cumulative distribution

function (CDF), familywise error rate (FWER), and multiple testing procedure (MTP).

2 Main Results

In this section, we describe the setting, assumptions, methodology, and asymptotic proper-

ties.

2.1 Setting

Consider random variables Y and X. The outcome Y is ordinal, with categories labeled

Y ∈ {1, 2, . . . , J}. The covariate may also be ordinal, or discrete, or a discretization of

a continuous variable, as long as there is a finite number of possible values, labeled as

X ∈ {1, 2, . . . , K}. For example, if the covariate is ordinal with values “low,” “medium,”

and “high,” then X = 1 is the label for “low,” X = 2 for “medium,” and X = 3 for “high.”

Or if the covariate is discrete with points of interest 0.1, 0.2, . . . , 0.9, then X = 1 is the

label for 0.1, X = 2 for 0.2, . . . , X = 9 for 0.9. In sum, the supports Y and X are

Y ∈ Y ≡ {1, . . . , J}, X ∈ X ≡ {1, . . . , K}. (1)
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The population and empirical (estimated) conditional CDF values are respectively

Fx(y) ≡ P(Y ≤ y | X = x),

F̂x(y) ≡
∑n

i=1 1{Yi ≤ y}1{Xi = x}
nx

, nx ≡
n∑

i=1

1{Xi = x},
(2)

given observations i = 1, . . . , n. That is, Fx(y) is the proportion of the X = x subpopulation

with Y ≤ y, and F̂x(y) is the proportion of the Xi = x subsample with Yi ≤ y.

We assume iid sampling and condition on the size of each subsample nx, which is equiva-

lent to conditioning on all the observed Xi values (like in classical linear regression results).

This is also equivalent to repeated sampling of nx iid draws of Yi from the corresponding

conditional distribution independently for each x = 1, . . . , K, which is how we formalize the

setting in Assumption A1.

Assumption A1. Using the notation in (1) and (2), n1/nx → γx ∈ (0,∞) for each x ∈ X ,

and the sample consists of nx values of Xi = x for each x ∈ X , with the corresponding Yi

values sampled iid from the corresponding population conditional distribution of Y | X = x,

and all Yi are mutually independent.

2.2 Stochastic monotonicity inequalities

Outcome Y stochastically increasing in X means that for any x2 > x1, the conditional

distribution of Y | X = x2 first-order stochastically dominates that of Y | X = x1. Using

the notation of (2), this means

Fx2(y) ≤ Fx1(y) for all (x1, x2, y) ∈ X × X × Y with x2 > x1. (3)

Strict and weak monotonicity/inequalities are statistically indistinguishable, so we do not

emphasize the difference. We restrict attention to y ∈ {1, . . . , J − 1} because Fx2(J) =

Fx1(J) = 1 for all x1, x2. We also restrict attention to x2 = x1 + 1. Note (3) holds if and
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only if

θx,y ≤ 0 for all (x, y) ∈ {1, . . . , K − 1} × {1, . . . , J − 1}, θx,y ≡ Fx+1(y)− Fx(y). (4)

Although first-order stochastic dominance generally suggests one ordinal distribution

is “better” than another, the relationship is more complex if utility depends not on the

observed ordinal value but rather on a latent continuous variable. Given a model with fixed

thresholds, latent dominance implies ordinal dominance, but not vice-versa. Thus, rejecting

ordinal stochastic monotonicity implies rejecting latent stochastic monotonicity, and partial

evidence of ordinal stochastic monotonicity still provides some evidence in favor of latent

stochastic monotonicity, but even full ordinal stochastic monotonicity does not imply latent

stochastic monotonicity. For related discussion and results, see Kaplan and Zhao (2023).

2.3 Multiple testing procedure

Based on (4), we consider multiple testing of the following family of hypotheses:

H0x,y : θx,y ≤ 0 for (x, y) ∈ {1, . . . , K − 1} × {1, . . . , J − 1}. (5)

The number of hypotheses is (K − 1)(J − 1). A multiple testing procedure makes a binary

decision (reject or not) for each hypothesis, hence 2(K−1)(J−1) possible results. In principle,

we could include even more hypotheses, based on (3). Even though (3) and (4) are equiva-

lent, multiple testing of the corresponding inequality hypotheses is not equivalent. We use

(5) because the interpretation is clear, the results are easier to communicate, and the critical

value does not need to be as large as when including lots of additional hypotheses. Nonethe-

less, alternative treatments of the full family of inequalities based on (3) remains a question

for future research.

Our multiple testing procedure (MTP) controls the asymptotic familywise error rate

(FWER). There are other measures of overall false positive rate for multiple testing, like

the k-FWER and false discovery proportion of Lehmann and Romano (2005a) and the false
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discovery rate of Benjamini and Hochberg (1995); we choose FWER because it has a very

clear interpretation and allows us to invert our MTP into confidence sets. FWER is defined

as (e.g., Lehmann and Romano, 2005b, §9.1)

FWER ≡ P(reject any true H0x,y). (6)

Conversely, 1− FWER is the probability of having zero false rejections (type I errors). Our

MTP has “strong control” meaning that it controls asymptotic FWER regardless of which

H0x,y are true or false.

Our MTP uses standard t-statistics but with a higher critical value that accounts for

multiple testing. For any real scalar m, define

t̂x,y(d) ≡
F̂x+1(y)− F̂x(y)− d

ŝx,y
, (7)

where ŝx,y is defined in (21) as an estimator of the standard deviation of F̂x+1(y) − F̂x(y).

As usual, in practice we compute the t-statistic centered at our hypothesized value d = 0,

and asymptotic properties can be bounded by the behavior of the t-statistic centered at the

true d = θx,y ≡ Fx+1(y) − Fx(y). As an important ingredient of our FWER derivations,

Lemma 1 establishes the asymptotic normal distribution of random vector t̂ that contains

all the t-statistics centered at the true θx,y:

t̂ ≡ (t̂1, t̂2, . . . , t̂J−1)
′, t̂j ≡

(
t̂K−1,j(θK−1,j), t̂K−2,j(θK−2,j), . . . , t̂1,j(θ1,j)

)
. (8)

Lemma 1. Under Assumption A1,

t̂
d−→ t ∼ N(0,Σ), Σ = S′WS,

where W and S are defined in (19) and (23).

We provide some brief intuition for the critical value whose validity is formally established

in the proof of Theorem 2. Intuitively, the least favorable configuration here is when all

θx,y = 0: every null H0x,y is true (and thus can contribute to FWER), but just barely, so
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there is the highest probability of some estimated θ̂x,y > 0 large enough to reject H0x,y. In

that case, t̂x,y(0) = t̂x,y(θx,y), and we make a familywise error whenever the maximum (over

x, y) t-statistic exceeds our critical value. Thus, using the asymptotic approximation, if we

want FWER = α, then the critical value should be the (1 − α)-quantile of the distribution

of the maximum of t:

cα ≡ (1− α)-quantile of max
x,y

tx,y, (9)

where the tx,y are the elements of t and t ∼ N(0,Σ) by Lemma 1. Because Σ is unknown,

in practice it can be replaced with consistent estimator Σ̂:

ĉα ≡ (1− α)-quantile of max
x,y

t̃x,y, t̃ ∼ N(0, Σ̂). (10)

Although an analytic formula is intractable, (10) can be simulated as in our code.

Method 1. First, compute the t-statistics t̂x,y(0) as in (7). Second, given the desired FWER

level α, simulate the critical value ĉα in (10) following the steps in Section 2.5. Third,

for each (x, y), to test all H0x,y : θx,y ≤ 0 as in (5), reject H0x,y : θx,y ≤ 0 if t̂x,y(0) > ĉα.

Alternatively, to test the reversed family of hypotheses H≥
0x,y : θx,y ≥ 0, reject H0x,y if t̂x,y(0) <

−ĉα.

Method 1 includes the reversed H≥
0x,y because their rejection provides stronger evidence

of θx,y < 0 than does non-rejection of H0x,y. For example, even if θ̂x,y = 1.7 (our best guess

is a positive θx,y), if there is a small sample size or otherwise high uncertainty, we may still

not reject H0x,y. In contrast, to reject H≥
0x,y, not only must we have θ̂x,y < 0, but it must be

significantly less than zero (compared to our uncertainty) in order for the test to control the

type I error rate (or FWER). In sum, non-rejection of H0x,y suggests the data are consistent

with the hypothesis that Y is stochastically increasing in X, but rejection of H≥
0x,y provides

stronger evidence in favor of the inequalities that comprise stochastic increasingness of Y in

X.

Theorem 2 theoretically justifies our MTP.
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Theorem 2. Under Assumption A1, Method 1 has strong control of asymptotic FWER at

level α.

2.4 Confidence sets

The MTP in Method 1 can be inverted into confidence sets for the true set

T ≡ {(x, y) : θx,y ≤ 0}. (11)

The goal is, with high asymptotic probability, for inner confidence set ĈS inner to be contained

within the true set T , and for outer confidence set ĈSouter to contain T . That is, for

confidence level 1− α,

lim
n→∞

P(ĈS inner ⊆ T ) ≥ 1− α,

lim
n→∞

P(ĈSouter ⊇ T ) ≥ 1− α.

(12)

Intuitively, ĈS inner provides a conservative assessment of the true set T , while ĈSouter

gives a larger “estimate” describing how large the true set might be. Corresponding to the

earlier discussion of stronger and weaker evidence, the inner confidence set collects points

for which the reversed H≥
0x,y is rejected (strong evidence), whereas the outer confidence set

collects points for which the original H0x,y is not rejected (weak evidence).

Theorem 3 formally establishes the property in (12) for our confidence sets described in

Method 2.

Method 2. First run Method 1. The inner confidence set ĈS inner collects all pairs of (x, y)

for which the reversed null H≥
0x,y : θx,y ≥ 0 is rejected. The outer confidence set ĈSouter

collects all pairs of (x, y) for which the original null H0x,y : θx,y ≤ 0 is not rejected.

Theorem 3. Under Assumption A1, Method 2 satisfies (12).

If instead of the set T in (11) we are interested in its complement T ∁ ≡ {(x, y) : θx,y >

0}, then the outer CS is the complement of the inner CS for T , and the inner CS is the
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complement of the outer CS for T . This follows because the event ĈS inner ⊆ T is equivalent

to the inner CS complement containing T ∁, and the event ĈSouter ⊇ T is equivalent to the

outer CS complement being contained within T ∁. Thus, using the notation from (12),

lim
n→∞

P(ĈS
∁

inner ⊇ T ∁) = lim
n→∞

P(ĈS inner ⊆ T ) ≥ 1− α,

lim
n→∞

P(ĈS
∁

outer ⊆ T ∁) = lim
n→∞

P(ĈSouter ⊇ T ) ≥ 1− α.

2.5 Critical value simulation

As noted earlier, we compute the critical value ĉα by simulation. First, let

Σ̂ = Ŝ
′
Ŵ Ŝ, (13)

where Ŵ and Ŝ are the sample analogs of W and S from (19) and (23). The consistency

result in (22) implies Ŝ
p−→ S, and by the weak law of large numbers Ŵ

p−→ W , so applying

the continuous mapping theorem yields Σ̂
p−→ Σ.

The simulation proceeds as follows, as implemented in our provided code. First, we

generate a random draw (a vector) from N(0, Σ̂). Second, we take the maximum of this

vector. Third, we repeat this process N times, collecting all the maxima. Fourth, we take

the (1− α)-quantile of the N maximum values; this is ĉα.

With large enough N , we can achieve arbitrarily small simulation error. Larger N im-

proves accuracy but increases computation time. Given our simulation results (Section 4),

we suggest N = 1000 as a default. In our empirical application, we use N = 100,000 because

computation time is still only a few seconds.

3 Empirical Illustration

This section includes an empirical example to demonstrate our methodology’s results and

interpretations. The multiple testing and confidence set results provide a much more detailed

picture than simply “reject stochastic monotonicity.” All variables come from the publicly

11



available NHIS 2019 data (National Center for Health Statistics, 2019). Because total run-

time is only a few seconds, we use N = 100,000 random draws to compute the critical value.

Replication code in R (R Core Team, 2023) is provided.1

Many studies have examined the relationship between reported depression and educa-

tion (e.g., Bauldry, 2015; Cohen, Nussbaum, Weintraub, Nichols, and Yen, 2020; Lee, 2011).

The nature of the correlation varies across different investigations. Individuals with more

education may possess better mental health management skills, but they may also more

readily recognize and report their psychological states. Further, the relationship is poten-

tially different when (for example) comparing high-school dropouts and graduates than when

comparing bachelor’s and graduate degree holders, and the relationship may be different for

severe depression than for milder forms. Our method can detect any such patterns because it

is nonparametric and does not impose any restrictions. We assess evidence of where the level

of depression is stochastically decreasing in education, i.e., where mental health is improving.

We use the following variables. Depression variable Y (PHQCAT_A) summarizes the eight-

item Patient Health Questionnaire depression scale (PHQ-8) into four categories: “none/min-

imal,” “mild,” “moderate,” and “severe,” respectively coded as 1, 2, 3, and 4. Education

variable X (recoded from EDUC_A) has five categories: “no high school degree,” “HS de-

gree only,” “some college” (including associate’s degree), “bachelor’s degree,” and “graduate

degree” (master’s, professional, or doctoral), respectively coded as 1, 2, 3, 4, and 5. We

restrict the age range to 30–65 years old for a fair comparison of people with various levels

of education including graduate degrees, and to concentrate on those who are eligible for the

workforce. For simplicity, observations with missing values are dropped and weights are not

used.

Figure 1 visualizes the data on depression and education in a mosaic plot. Each column

corresponds to a category of X, and its width is proportional to the number of observations

in that category. For example, the HS column is significantly wider than the no-HS column,

1https://qianjoewu.github.io/research/osm/Wu_Kaplan_OSM.zip
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Figure 1: Mosaic plot of depression and education.

showing that more individuals in the data have (only) a high-school degree than do not

have a high-school degree. Each cell’s area is proportional to the sample proportion of

individuals with that particular value of (X, Y ); the text label shows that proportion as

a percentage, along with the corresponding number of observations in that cell. Because

the joint probability of (X, Y ) = (x, y) is the product of the marginal X = x probability

and the conditional Y probability given X = x, within a column corresponding to X = x,

each cell’s height is proportional to the proportion of observations with the corresponding

y value within the Xi = x subsample. These conditional probabilities are scaled such that

the full height of each column is probability one (or 100%). For example, in the HS column,

the “none/minimal” cell’s height is over half the total column height, meaning that among

individuals in the data who have (only) a high-school degree, over half have depression level

“none/minimal.” This further implies that the breaks between cells within a column show
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the conditional CDF values. For example, in the no-HS column, the top of the “mild” cell is

around 7/8 between the bottom and top of the column, indicating the empirical conditional

CDF is around F̂1(2) ≈ 7/8. For each level y, the mosaic plot shows the data sample follows

the pattern F̂1(y) ≤ F̂2(y) and F̂3(y) ≤ F̂4(y) ≤ F̂5(y) (i.e., generally lower depression at

higher education), but F̂2(y) ≥ F̂3(y). However, we wish to learn not only about the sample

but about the population relationship. Our methods help assess the strength of the evidence

that these patterns hold in the population.

Table 1: Test statistics for depression versus education (ĉ0.05 = 2.59).

Education category x

Depression level y 1 (vs. 2) 2 (vs. 3) 3 (vs. 4) 4 (vs. 5)

1: none/minimal 9.21 −4.83 10.18 3.86
2: mild (or below) 6.64 −3.26 9.47 2.81
3: moderate (or below) 4.69 −2.17 7.27 2.63

True set: points where mental health is better (lower depression) at next-higher
education level, {(x, y) : Fx(y) ≤ Fx+1(y)}. Gray shading: outer confidence set.
Bold: inner confidence set. Confidence level 95%. Critical value computed using
N = 100,000 random draws.

Table 1 shows our inference results, which can be interpreted as follows. The numbers

are the t-statistics for testing the null hypotheses H0x,y : Fx(y) ≥ Fx+1(y). For example, the

bottom-right number in the table is for x = 4 and y = 3, corresponding to the t-statistic

for the null hypothesis that F4(3) ≥ F5(3), i.e., that the population probability of having

moderate or below depression (Y ≤ 3) is higher among individuals with (only) a bachelor’s

degree (x = 4) than among individuals who also have a graduate degree (x = 5). The

corresponding t-statistic t̂x,y(0) from (7) is t̂4,3(0) = (F̂5(3) − F̂4(3))/ŝ4,3 = 2.63, which is

above ĉ0.05 = 2.59 (hence bold 2.63 in the table), so we reject F4(3) ≥ F5(3) in favor of

F4(3) < F5(3). Because there are only J = 4 categories of Y , we can also interpret the

conclusion F4(3) < F5(3) as P(Y = 4 | X = 4) > P(Y = 4 | X = 3), i.e., a higher

probability of severe depression in the bachelor’s-only subpopulation than in the graduate

degree subpopulation. More generally in the table, a t-statistic is positive when F̂x+1(y) >
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F̂x(y), indicating a larger proportion of individuals with depression level y or less in the

X = x + 1 subsample than in the X = x subsample, generally indicating less depression

(better mental health) at the higher education level x + 1 than at x. If the t-statistic is

positive and above the critical value, then there is strong evidence that this is true in the

population, too. Consequently, when t̂x,y(0) > ĉ0.05, that (x, y) is included in the 95% inner

confidence set, which collects the points with strong evidence of depression decreasing with

education; such t-statistics are in bold. The 95% outer confidence set includes (x, y) as long

as there is no strong evidence in the opposite direction, i.e., as long as t̂x,y(0) > −ĉ0.05; such

t-statistics are shaded gray . Note the t̂x,y(0) > ĉ0.05 are thus bold and shaded because

the outer confidence set contains the inner confidence set.

Table 1 shows strong evidence of a general pattern of lower depression with higher ed-

ucation, but with important exceptions. Most of the t-statistics exceed our 5% FWER

critical value, collectively forming a large 95% inner confidence set for the true set of points

{(x, y) : Fx(y) ≤ Fx+1(y)} where mental health is better (lower depression) at the higher

education level. This includes all depression levels y and all education levels except x = 2

(vs. 3): only-HS compared to some-college. The outer confidence set additionally includes

a cell (x, y) = (2, 3) with a t-statistic that is not quite negative enough for our multiple

testing procedure to reject in the opposite direction. (The negative point estimate means

our best guess is that F3(3)− F2(3) < 0, but there is too much uncertainty for the multiple

testing procedure to reject.) However, the t-statistics at (x, y) = (2, 1) and (2, 2) are negative

enough to reject, so they are excluded from the outer confidence set. Thus, there is some

strong evidence that the general pattern of less depression at higher education does not hold

everywhere, specifically when comparing the only-HS and some-college subpopulations.

Overall, Table 1 provides much richer results than simply saying we reject the global null

hypothesis of stochastic monotonicity.

15



4 Simulations

This section presents simulations of finite-sample FWER, for a variety of sample sizes and

numbers of Y and X categories. We use the “least favorable” configuration that maximizes

FWER by setting all null hypothesis inequalities to be binding, i.e., θx,y = 0 for all (x, y).

We provide code in R (R Core Team, 2023) to replicate our results.2

The simulation proceeds as follows. For the data generating process, Y andX respectively

have J andK categories. The conditional distribution of Y is uniform across the J categories,

so the conditional CDF is Fx(y) = y/J for each (x, y) and all θx,y ≡ Fx+1(y) − Fx(y) =

y/J − y/J = 0. After randomly drawing a dataset having nx observations with Xi = x for

each x (so total sample size n = Knx), Method 1 is run, with the critical value based on

N simulations, and the results are stored. This is repeated 1000 times. Because all H0x,y

are true, the simulated FWER is the proportion of simulated datasets for which at least one

H0x,y is rejected. Besides FWER, we report the full range (across all simulated datasets) of

simulated critical values cα for each case.

Table 2 presents the simulation results. They are divided into three sections correspond-

ing to the different (J,K), but results are qualitatively similar in each section, showing the

following patterns. First, FWER is somewhat above α = 0.05 with the smallest sample size,

closer to 0.10, suggesting that (as usual) results from smaller samples should be interpreted

more cautiously. Second, as nx increases, FWER approaches the nominal α. This reflects

our procedure’s exact asymptotic FWER in this least favorable configuration; FWER would

be lower in other cases. Third, compared to N = 1000, computing the critical value using

N = 10,000 draws improves stability somewhat (tighter range of critical values) but improves

FWER accuracy only very slightly, so in practice we suggest using N = 1000 as the default.

2https://qianjoewu.github.io/research/osm/Wu_Kaplan_OSM.zip
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Table 2: Simulation results.

J K nx N α cα FWER

4 4 20 1000 0.05 [2.32, 2.59] 0.098
4 4 100 1000 0.05 [2.34, 2.58] 0.068
4 4 1000 1000 0.05 [2.36, 2.57] 0.060
4 4 10,000 1000 0.05 [2.36, 2.55] 0.045
4 4 10,000 10,000 0.05 [2.43, 2.52] 0.047
4 4 10,000 10,000 0.10 [2.18, 2.25] 0.112
4 4 10,000 10,000 0.01 [2.94, 3.08] 0.010

6 5 20 1000 0.05 [2.59, 2.84] 0.092
6 5 100 1000 0.05 [2.55, 2.81] 0.075
6 5 1000 1000 0.05 [2.57, 2.79] 0.068
6 5 10,000 1000 0.05 [2.60, 2.79] 0.053
6 5 10,000 10,000 0.05 [2.70, 2.77] 0.047
6 5 10,000 10,000 0.10 [2.45, 2.50] 0.105
6 5 10,000 10,000 0.01 [3.18, 3.32] 0.007

8 10 20 1000 0.05 [2.92, 3.18] 0.099
8 10 100 1000 0.05 [2.95, 3.18] 0.074
8 10 1000 1000 0.05 [2.94, 3.20] 0.056
8 10 10,000 1000 0.05 [2.95, 3.18] 0.046
8 10 10,000 10,000 0.05 [3.04, 3.12] 0.046
8 10 10,000 10,000 0.10 [2.82, 2.88] 0.090
8 10 10,000 10,000 0.01 [3.47, 3.61] 0.007

5 Conclusion

We have proposed inference methods to provide a richer assessment of stochastic monotonic-

ity when the outcome is ordinal, by separately considering each conditional CDF inequality

that together comprise stochastic monotonicity. Our multiple testing procedure controls the

asymptotic familywise error rate, and with the desired asymptotic probability, our outer

confidence set contains the set of true inequalities and our inner confidence set is contained

within it. In future work, to complement these frequentist confidence sets, we plan to develop

Bayesian credible sets and assess their asymptotic frequentist properties. For the related joint

testing problem, the frequentist test is much more conservative than a Bayesian test even

asymptotically (e.g., Kaplan and Zhuo, 2021; Kline, 2011), but this does not translate di-

rectly to multiple testing and related confidence sets. Deriving multiple testing procedures
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for continuous X and/or Y would also be valuable.
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A Proofs

A.1 Proof of Lemma 1

Proof. Under Assumption A1 and the central limit theorem (e.g., van der Vaart, 1998,

Prop. 2.27), as nx → ∞,

√
nx(F̂x(y)− Fx(y))

d−→ N
(
0, Fx(y)[1− Fx(y)]

)
. (14)

Let Â be the estimator of vector A that contains all conditional CDFs,

A ≡ (F1(1), F1(2), . . . , F1(J − 1), . . . , FK(1), FK(2), . . . , FK(J − 1))′. (15)

Under Assumption A1, by the continuous mapping theorem (CMT) (e.g., van der Vaart,

1998, Thm. 2.3),

√
n1(Â−A)

d−→ N(0,V ), (16)

where 0 is a vector of zeros and V is the (JK −K)× (JK −K) block diagonal matrix

V ≡



V 1 0 . . . 0

0 V 2 · · · 0

...
...

. . .
...

0 0 · · · V K


(17)

where each V k is a (J − 1)× (J − 1) matrix with entry in row i, column j denoted

V k
ij = γxFx(min{i, j})[1− Fx(max{i, j})].

We apply the delta method (e.g., van der Vaart, 1998, Thm. 3.1) to derive the asymptotic

distribution of the full vector θ̂ for testing the stochastic monotonicity inequalities. For

x ∈ {1, 2, . . . , K − 1} and y ∈ {1, 2, . . . , J − 1},

θ̂ ≡ (θ̂1, θ̂2, . . . , θ̂J−1)
′, (18)
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where each θ̂j ≡ (θ̂K−1,j, θ̂K−2,j, . . . , θ̂1,j) and θ̂x,y ≡ F̂x+1(y)− F̂x(y) is the estimator of θx,y

defined in (4). Then,

√
n1(θ̂ − θ)

d−→ N(0,W ), W ≡ H ′V H , (19)

where H = ∂
∂A

θ′ is the partial derivative of the vector θ′ with respect to A in (15), and V

is from (17). Note each element of H is either −1, 0, or 1; more specifically, within each

column of H (the derivative of a particular θx,y with respect to A), one element is −1, one

element is 1, and the rest equal zero.

From (19), for each θ̂x,y, using n1/nx → γx from A1,

√
n1(θ̂x,y − θx,y) =

√
n1{[F̂x+1(y)− F̂x(y)]− [Fx+1(y)− Fx(y)]}

=

→√
γx+1︷ ︸︸ ︷√

n1/nx+1

use (14)︷ ︸︸ ︷√
nx+1[F̂x+1(y)− Fx+1(y)]−

→√
γx︷ ︸︸ ︷√

n1/nx

use (14)︷ ︸︸ ︷√
nx[F̂x(y)− Fx(y)]

d−→ N(0, σ2
x,y),

σx,y ≡
√
γxFx(y)[1− Fx(y)] + γx+1Fx+1(y)[1− Fx+1(y)], (20)

where the variances are summed because the subsamples for Xi = x and Xi = x + 1 are

independent given A1, and if W ⊥⊥ Z then Var(W + Z) = Var(W ) + Var(Z).

For the standard error of θ̂x,y, which is asymptotically σx,y/
√
n1 given (20), we use the

estimator

ŝx,y ≡

√
(n1/nx)F̂x(y)(1− F̂x(y)) + (n1/nx+1)F̂x+1(y)(1− F̂x+1(y))

n1

. (21)

By the consistency of the conditional CDF estimators and the CMT, as n1 → ∞,

√
n1ŝx,y =

√
(n1/nx)F̂x(y)(1− F̂x(y)) + (n1/nx+1)F̂x+1(y)(1− F̂x+1(y))

p−→
√

γxFx(y)(1− Fx(y)) + γx+1Fx+1(y)(1− Fx+1(y)) = σx,y, (22)

the asymptotic standard deviation in (20). Informally, the standard error estimator ŝx,y is

“consistent,” meaning formally that
√
n1ŝx,y

p−→ σx,y.
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Substituting (21) into (7),

t̂x,y(θx,y) =
θ̂x,y − θx,y

ŝx,y
=

√
n1(θ̂x,y − θx,y)√

(n1/nx)F̂x(y)(1− F̂x(y)) + (n1/nx+1)F̂x+1(y)(1− F̂x+1(y))
.

Thus, we can write the vector of properly centered t-statistics as t̂ =
√
n1(θ̂ − θ)Ŝ, where

√
n1(θ̂ − θ) is the left-hand side of (19), and Ŝ is a diagonal matrix having elements

1/(ŝx,y
√
n1) matching the corresponding (x, y) from the θ vector; equivalently, the row i,

column j element of the matrix Ŝ is 1{i = j}Ŵij. By (22), Ŝ
p−→ S, the diagonal matrix

with corresponding (x, y) elements 1/σx,y,

S ≡



1/σK−1,1 0 · · · 0

0 1/σK−2,1 · · · 0

...
...

. . .
...

0 0 · · · 1/σ1,J−1


. (23)

By (19) and CMT, t̂ ≡ √
n1(θ̂ − θ)Ŝ

d−→ N(0,S′WS).

A.2 Proof of Theorem 2

Proof. When testing original hypotheses H0x,y : Fx+1(y)−Fx(y) ≤ 0, the set of true hypothe-

ses is T ≡ {(x, y) : Fx+1(y)− Fx(y) ≤ 0}. For any true H0x,y,

t̂x,y(0) =
F̂x+1(y)− F̂x(y)

ŝx,y
≤ F̂x+1(y)− F̂x(y)−

≤0 given true H0x,y︷ ︸︸ ︷
[Fx+1(y)− Fx(y)]

ŝx,y
≡ t̂x,y(

θx,y︷ ︸︸ ︷
Fx+1(y)− Fx(y)).

(24)

Thus,

FWER ≡ P(reject H0x,y for any (x, y) ∈ T )

= P(t̂x,y(0) > ĉα for any (x, y) ∈ T )

= P( max
(x,y)∈T

use (24)︷ ︸︸ ︷
t̂x,y(0) > ĉα)
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≤ P( max
(x,y)∈T

t̂x,y(θx,y) > ĉα)

≤ P( max
any (x,y)

t̂x,y(θx,y) > ĉα)

→ P( max
any (x,y)

from Lemma 1︷︸︸︷
tx,y > cα)

= α, (25)

where the second inequality holds because T ⊆ {1, . . . , K−1}×{1, . . . , J−1} (“any” (x, y)),

and the convergence holds by Lemma 1 and the CMT (because max is continuous), along

with ĉα
p−→ cα, where ĉα was defined in (10) as the (1− α)-quantile of the max of a random

vector following the N(0, Σ̂) distribution (with estimator Σ̂) and cα was defined in (9) as the

(1−α)-quantile of the max of N(0,Σ) (with true Σ). This last part follows because Σ̂
p−→ Σ

(given A1 and CMT) and applying the CMT (given that the max of a normal vector has a

continuous, strictly increasing distribution function and thus continuous quantile function).

The asymptotic FWER bound for testing the reversed hypotheses H≥
0x,y : Fx+1(y) −

Fx(y) ≥ 0 follows essentially the same derivation with the same reason for each step be-

low. Now defining T ≥ ≡ {(x, y) : Fx+1(y)− Fx(y) ≥ 0},

FWER ≡ P(reject H≥
0x,y for any (x, y) ∈ T ≥)

= P(t̂x,y(0) < −ĉα for any (x, y) ∈ T ≥)

= P( min
(x,y)∈T ≥

t̂x,y(0) < −ĉα)

≤ P( min
(x,y)∈T ≥

t̂x,y(θx,y) < −ĉα)

≤ P( min
any (x,y)

t̂x,y(θx,y) < −ĉα)

→ P( min
any (x,y)

tx,y < −cα) = P( − min
any (x,y)

tx,y > cα) = P( max
any (x,y)

tx,y > cα) = α,

also using the symmetry of the t ∼ N(0,Σ) distribution that implies max t
d
= −min t.
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A.3 Proof of Theorem 3

Proof. For the inner CS, we want to derive the probability of the event that the inner

CS is contained within T , which is equivalently characterized as “(x, y) ∈ ĈS inner only if

(x, y) ∈ T .” With reversed hypotheses H≥
0x,y : θx,y ≥ 0 but T ≡ {(x, y) : θx,y ≤ 0},

P(ĈS inner ⊆ T ) = P(reject any H≥
0x,y only if (x, y) ∈ T )

= P(reject any H≥
0x,y only if θx,y ≤ 0)

= 1− P(reject any H0x,y when θx,y > 0)

≥ 1− P(reject any H0x,y when θx,y ≥ 0)

= 1− FWER ≥ 1− α + o(1)

because FWER ≤ α + o(1) by Theorem 2.

The outer CS contains all elements in the true set T if and only if we do not reject any

original null hypothesis H0x,y : θx,y ≤ 0 with (x, y) ∈ T . Similar to the derivation above, the

coverage probability is

P(T ⊆ ĈSouter) = P(no H0x,y rejected with (x, y) ∈ T )

= 1− P(reject any H0x,y with θx,y ≤ 0)

= 1− FWER

≥ 1− α + o(1)

again because FWER ≤ α + o(1) by Theorem 2.

B General Health with Educational Attainment

Here we use the following variables from the NHIS 2019 data (National Center for Health

Statistics, 2019). General health variable Y (PHSTAT_A) has categories “poor,” “fair,”

“good,” “very good,” and “excellent,” respectively (re)coded as 1, 2, 3, 4, and 5. The
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education variable X is recoded based on EDUC_A as in Section 3. We restrict the age range

to 30–65 years old as in Section 3. For simplicity, observations with missing values are

dropped and weights are not used.
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Figure 2: Mosaic plot of general health and education.

Figure 2 visualizes the data on general health and education in a mosaic plot similar

to Figure 1. Here, F̂5(y) ≤ F̂4(y) ≤ F̂3(y) ≤ F̂2(y) ≤ F̂1(y) for all values of y. That

is, in the sample there is stochastic monotonicity: the distribution of general health is

“better” at higher levels of education in the sense of first-order stochastic dominance. Our

inference methods help assess the strength of the evidence that this same pattern holds in

the population.

Table 3 has almost the same interpretation as Table 1 described in Section 3, with

one exception. Before, better health meant lower Y , whereas here better health is higher

Y , so now the set of points where health is higher at higher education is {(x, y) : Fx(y) ≥
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Table 3: Test statistics for general health versus education (ĉ0.05 = 2.71).

Education category x

General health y 1 (vs. 2) 2 (vs. 3) 3 (vs. 4) 4 (vs. 5)

1: poor −6.73 −2.06 −5.55 −2.38
2: fair (or below) −12.68 −2.32 −13.64 −4.46
3: good (or below) −12.65 −5.67 −17.48 −4.19
4: very good (or below) −5.25 −1.87 −12.74 −4.21

True set: points where general health is better at next-higher education level,
{(x, y) : Fx(y) ≥ Fx+1(y)}. Gray shading: outer confidence set. Bold: inner con-
fidence set. Confidence level 95%. Critical value computed using N = 100,000
random draws.

Fx+1(y)}, instead of ≤ like before. Correspondingly, now better health with higher education

is indicated by a negative t-statistic. Thus, the inner confidence set corresponds to negative

t-statistics below −ĉ0.05, and the outer confidence set additionally allows t̂x,y < ĉ0.05.

Table 3 shows an even stronger pattern than Table 1 of improved health with higher

education. All but four of the 16 points are included in the inner confidence set, and the other

four points are in the outer confidence set. The point at (x, y) = (4, 1) involves comparing

the two very smallest subsamples, so it is not surprising there is more uncertainty about the

corresponding population comparison. The less-negative t-statistics at (x, y) values (2, 1),

(2, 2), and (2, 4) reflect the closer empirical conditional CDF values for high-school versus

some-college, the same education level comparison that in Section 3 showed the opposite

results of the other education level comparisons.

Overall, our results show strong evidence that general health is stochastically increasing

in education for most education levels, and somewhat weaker evidence that general health

for the some-college subpopulation stochastically dominates general health of the only-HS

subpopulation. Compared to not rejecting the global null that health stochastically increases

with education, our methodology provides much stronger and more precise results.
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