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Abstract

We develop multiple testing methodology to assess the evidence that an outcome

variable’s distribution (not just its mean) is “stochastically increasing” in a covariate.

Such a relationship holds globally if at each possible outcome value, the conditional

CDF evaluated at that value is decreasing in the covariate. Rather than test that single

global null hypothesis, we use multiple testing to separately evaluate each constituent

conditional CDF inequality. By inverting our multiple testing procedure, which controls

the familywise error rate, we construct “inner” and “outer” confidence sets for the

true set of inequalities consistent with stochastic increasingness. Simulations show

reasonable finite-sample properties. Empirically, we apply our methodology to study

the education gradient in health and life satisfaction. Practically, we provide code

implementing our methodology and replicating our results.
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1 Introduction

A fundamental empirical question is whether the outcome variable Y is “increasing” in the

covariate X, which can be characterized in terms of stochastic monotonicity. For example,

is life satisfaction increasing in education? We say that Y is “stochastically increasing” in X

if, for any two values of X, the conditional distribution of Y at the higher value first-order

stochastically dominates that at the lower value. Economically, assuming Y is scaled so

higher values are better, this conditional stochastic dominance means that the conditional

distribution of Y is “better” at higher X values, in the sense of higher expected utility.

However, because this is a strong property, it can be statistically difficult to find strong

evidence in its favor, and conversely it may nearly hold but be rejected for an economically

small violation.

We contribute to the stochastic monotonicity inference literature by proposing and justi-

fying new methodology that focuses on multiple testing, as well as allowing either continuous

or ordinal/discrete outcomes. Other stochastic monotonicity tests (see below) assume a con-

tinuous outcome and only test a single null hypothesis of global stochastic monotonicity.

Instead of testing the single null hypothesis that Y is stochastically increasing in X, we

consider multiple testing of the conditional CDF inequalities that jointly comprise stochas-

tic increasingness. Specifically, each inequality checks whether the conditional CDF of Y is

decreasing as X increases to the next-highest value, over all values in the support of Y and

any finite number of X values. Despite this being an infinite number of points when Y is

continuous, our methods still control the familywise error rate.

Complementing global testing of a single null hypothesis, multiple testing addresses the

aforementioned statistical concerns in the following two ways. First, if stochastic increas-

ingness is rejected, then multiple testing shows more precisely whether many of the con-

stituent conditional CDF inequalities are rejected, or only a few, or even just one. Second,

if stochastic increasingness is not rejected, then multiple testing can be used on the reversed

inequalities (conditional CDF increasing with X) to see if they can be rejected in favor of

the original inequalities (decreasing with X). This gathers stronger statistical evidence in

favor of stochastic increasingness than simply failing to reject the original null hypothesis,

because type II error rates (false non-rejection) are not controlled. For example, due to small

sample size (high statistical uncertainty), stochastic increasingness may fail to be rejected

even if the estimated conditional distributions are stochastically decreasing.

Although the interpretation is the same either way, our statistical approach depends on

the type of outcome variable. For ordinal or discrete outcomes, there are a finite num-

ber of inequalities, so we use a maximum t-statistic approach. For each true hypothesis,
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the t-statistic is bounded above by the corresponding properly centered t-statistic. Thus,

the maximum t-statistic among true hypotheses is bounded above by the maximum of the

properly centered t-statistic vector, which is asymptotically normal with mean zero and a

consistently estimable covariance matrix. The critical value can be computed by simulat-

ing this distribution, or by bootstrap. For continuous outcomes, our statistical approach

achieves finite-sample control of the familywise error rate by building on the two-sample

multiple testing procedure of Goldman and Kaplan (2018). They use the probability inte-

gral transform and joint distribution of order statistics to achieve finite-sample control of

familywise error rate. Their method applies directly to our setting if X is binary. Otherwise,

we use a Bonferroni correction to maintain the finite-sample control of familywise error rate.

Although the Bonferroni correction errs on the conservative side, there are two reasons this

may not have a large quantitative effect on power. First, the effect is smaller with a smaller

number of X values, which applies to the education variable in our empirical applications,

for example. Second, the effect is smaller if the dependence across X is more negative. Note

that Bonferroni is not conservative in the extreme case of “perfect negative dependence”

where a false rejection at one X implies no false rejections at any other X. In our case,

if the estimated conditional CDF at X = 2 is higher than the true one, then it makes us

more likely to reject the comparisons of X = 1 with X = 2, but less likely to reject the

comparisons of X = 2 with X = 3; that is, negative dependence.

Additionally, our multiple testing procedure can be inverted into “inner” and “outer”

confidence sets. The inner confidence set contains all points at which the reversed inequalities

have been rejected, i.e., where there is strong evidence in favor of the inequality consistent

with stochastic increasingness. The outer confidence set contains all points at which the

original inequalities have not been rejected. Such confidence sets are similar to those of

Kaplan (2024) and to equation (1) of Armstrong and Shen (2023). The inner confidence

set can be seen as a conservative estimator of the true set of inequalities consistent with

stochastic increasingness, in that the inner set is contained within the true set with high

probability. Conversely, the outer set contains the true set with high probability.

Our methodology is illustrated through three empirical applications with 2022 UK data.

The first two applications have ordinal outcome variables, which are common in health.

The first application studies the relationship between general health and education. Across

almost all levels of both general health and education, we find strong evidence of health

stochastically increasing with education. Our second application studies the relationship

between life satisfaction and education. We find substantial strong evidence of life sat-

isfaction stochastically increasing with education overall, with one statistically significant

violation: the subpopulation without a high-school degree has a higher proportion in the
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highest satisfaction category than the subpopulation with (only) a high-school degree. Our

third application has a continuous outcome variable, a measure of physical health. While

there is too much statistical uncertainty in the distributional tails to make definitive state-

ments, there is strong evidence across most of the distribution in favor of physical health

stochastically increasing with education, across all levels of education. Overall, at least for

the UK context, these findings suggest that education-related health disparities are not lim-

ited to mean differences but extend to the entire distribution, as well as to a wide range of

education levels. In these cases, compared to a global test of stochastic increasingness that

would merely report “fail to reject,” our results are more detailed and useful.

Besides intrinsic interest in settings like the education gradient in health or intergener-

ational mobility (comparing child’s outcome Y with their parent’s outcome X), stochastic

monotonicity also appears in certain identifying assumptions or as a testable implication

thereof. For example, stochastic monotonicity is implied by the combination of (semi-

)monotone treatment response and exogenous treatment selection, as discussed by Manski

(1997, §3.4). As another example, Small, Tan, Ramsahai, Lorch, and Brookhart (2017)

identify a weighted average treatment effect when the treatment is stochastically increasing

in the instrument. Although testing is trivial in the binary–binary setting they focus on,

more generally our methodology can help assess their identifying assumption of stochastic

monotonicity.

Literature Our methodology contributes to the literature on stochastic monotonic-

ity and multiple testing. Inference on stochastic monotonicity has focused on continuous

Y and testing a single hypothesis of global stochastic monotonicity; for example, see Lee,

Linton, and Whang (2009), Seo (2018), and Chetverikov, Wilhelm, and Kim (2021). For

continuous Y , our approach builds on the two-sample inference framework in Goldman and

Kaplan (2018), delivering richer multiple testing-based results while controlling finite-sample

error rates. Stochastic monotonicity reduces to first-order stochastic dominance when X is

binary, connecting our paper to the literature on inference for stochastic dominance; for ex-

ample, see Davidson and Duclos (2000), Barrett and Donald (2003), Linton, Maasoumi, and

Whang (2005), and Linton, Song, and Whang (2010), with power improvements in Donald

and Hsu (2016), a unified treatment and extensions in Whang (2019), and a nonparametric

test for second-order stochastic dominance based on Lorenz-curve-type objects in Lando and

Legramanti (2025). Further, in our paper, the reversal of the direction of null hypothesis

inequalities to find stronger evidence is inspired by Davidson and Duclos (2013), who make a

related argument for testing the null of non-dominance against the alternative of stochastic

dominance. They also consider the weaker condition of “restricted stochastic dominance”

as in Condition I of Atkinson (1987, p. 751). Tabri and Elias (2024) also take restricted
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stochastic dominance as the alternative hypothesis, as well as allowing for missing data and

non-iid sampling. There are also inference methods for alternative relaxations of stochastic

dominance, such as the tests for “almost stochastic dominance” and other types of “almost

dominance” developed by Song and Sun (2025). However, the methods of Davidson and

Duclos (2013), Tabri and Elias (2024), and Song and Sun (2025) all assess stochastic domi-

nance by a single global test, whereas we assess stochastic monotonicity by multiple testing.

Although we emphasize multiple testing, testing the set of stochastic monotonicity inequal-

ities jointly would fit in the (moment) inequality literature; with ordinal or discrete Y , we

essentially follow the max-t approach as described in Section 4.1.1 of Canay and Shaikh

(2017), whose survey includes additional references. Also with ordinal or discrete Y , our

proof strategies are similar to those of Zhao and Kaplan (2025), who instead consider mul-

tiple testing of a function’s value across a finite set of points. Kaplan and Zhao (2023) also

use multiple testing with ordinal outcome variables, but they only compare two (uncondi-

tional) distributions and focus not on ordinal categories but on a latent variable’s quantiles.

Surveys of the multiple testing literature can be found in Lehmann and Romano (2005b)

and Romano, Shaikh, and Wolf (2010).

Paper structure Section 2 describes the setting with an ordinal or discrete outcome,

and our methodology and its properties. Section 3 presents simulation results. Section 4

describes our contributions with a continuous outcome. Section 5 applies our methodology

empirically.

Notation and abbreviations Generally, scalars, vectors, and matrices are respectively

typeset like X, X, and X. The indicator function is 1{·}, with 1{A} = 1 if event A occurs

and 1{A} = 0 if not, and “ ⇐⇒ ” means if and only if. Acronyms used include those for

confidence set (CS), continuous mapping theorem (CMT), cumulative distribution function

(CDF), familywise error rate (FWER), and multiple testing procedure (MTP).

2 Results for ordinal and discrete outcomes

In this section, we describe the setting, assumptions, methodology, and asymptotic properties

when the outcome variable is ordinal or discrete.

2.1 Setting

Consider random variables Y and X. The outcome Y is discrete or ordinal, with categories

labeled Y ∈ {1, 2, . . . , J}, for finite J . For example, if the ordinal categories are “disagree,”

“neutral,” and “agree,” then they are respectively coded as Y = 1, Y = 2, and Y = 3; or if
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the possible discrete values are 0, 0.5, 1, and 1.5, then these are respectively coded as Y = 1,

Y = 2, Y = 3, and Y = 4. The covariate may also be discrete or ordinal, with categories

labeled X ∈ {1, 2, . . . , K}, for finite K. Alternatively, the covariate may be a discretization

of a continuous variable; for example, a continuous covariate with support [0, 100] may be

discretized with values in [0, 10] coded as X = 1, (10, 20] coded as X = 2, etc. In sum, the

supports Y and X are

Y ∈ Y ≡ {1, . . . , J}, X ∈ X ≡ {1, . . . , K}. (1)

The population and empirical (estimated) conditional CDF values are respectively

Fx(y) ≡ P(Y ≤ y | X = x),

F̂x(y) ≡
∑n

i=1 1{Yi ≤ y}1{Xi = x}
nx

, nx ≡
n∑

i=1

1{Xi = x},
(2)

given iid observations over i = 1, . . . , n. That is, Fx(y) is the proportion of the X = x

subpopulation with Y ≤ y, and F̂x(y) is the proportion of the Xi = x subsample with

Yi ≤ y.

We assume iid sampling and condition on the size of each subsample nx, which is equiva-

lent to conditioning on all the observed Xi values (like in classical linear regression results).

This is also equivalent to repeated sampling of nx iid draws of Yi from the corresponding

conditional distribution independently for each x = 1, . . . , K, which is how we formalize the

setting in Assumption A1.

Assumption A1. Using the notation in (1) and (2), n1/nx → γx ∈ (0,∞) for each x ∈ X ,

and the sample consists of nx observations with Xi = x for each x ∈ X , with the corre-

sponding Yi values sampled iid from the corresponding population conditional distribution

of Y | X = x, and all Yi are mutually independent.

2.2 Stochastic monotonicity inequalities

Outcome Y stochastically increasing in X means that for any x2 > x1, the conditional

distribution of Y | X = x2 first-order stochastically dominates that of Y | X = x1. In the

notation of (2), this means

Fx2(y) ≤ Fx1(y) for all (x1, x2, y) ∈ X × X × Y with x2 > x1. (3)

As with stochastic dominance testing, despite being economically different, strict and weak

inequalities are statistically indistinguishable, so we do not emphasize the difference.
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We test a subset of the inequalities in (3). We restrict attention to y ∈ {1, . . . , J − 1}
because Fx2(J) = Fx1(J) = 1 for all x1, x2. In principle, we could test all {(x1, x2) ∈
X × X : x1 < x2}, which is K(K − 1)/2 different values of (x1, x2). However, without

claiming optimality against all alternatives, we restrict attention to the K−1 pairs satisfying

x2 = x1 + 1 because reducing the number of comparisons from (J − 1)K(K − 1)/2 to

(J − 1)(K − 1) allows a lower critical value that improves power, while still testing a subset

of inequalities jointly equivalent to (3). That is, (3) holds if and only if

θx,y ≤ 0 for all (x, y) ∈ {1, . . . , K − 1} × {1, . . . , J − 1}, θx,y ≡ Fx+1(y)− Fx(y). (4)

Additionally, testing (4) yields results that are easier to interpret and communicate.

For ordinal outcomes, although first-order stochastic dominance generally suggests one

distribution is “better” than another, the relationship is more complex if utility depends

not on the observed ordinal value but rather on a latent continuous variable. We focus here

on testing the conditional ordinal distributions; for interpretation with respect to a latent

variable, see Kaplan and Zhao (2023).

2.3 Multiple testing procedure

Based on (4), we consider multiple testing of the following family of hypotheses:

H0x,y : θx,y ≤ 0 for (x, y) ∈ {1, . . . , K − 1} × {1, . . . , J − 1}. (5)

The number of hypotheses is (J − 1)(K − 1). A multiple testing procedure makes a binary

decision (reject or not) for each hypothesis, hence 2(J−1)(K−1) possible results.

Our multiple testing procedure (MTP) controls the asymptotic familywise error rate

(FWER). Although there are other measures of overall false positive rate for multiple testing,

like the k-FWER and false discovery proportion (Lehmann and Romano, 2005a) and the

false discovery rate (Benjamini and Hochberg, 1995), we use FWER because it has a clear

interpretation and allows us to invert our MTP into confidence sets. FWER is defined as

(Lehmann and Romano, 2005b, §9.1)

FWER ≡ P(reject any true H0x,y). (6)

Conversely, 1− FWER is the probability of having zero false rejections (zero type I errors).

Our MTP has “strong control” because it controls asymptotic FWER regardless of which

H0x,y are true or false (Lehmann and Romano, 2005b, §9.1).
Our MTP uses standard t-statistics but with a higher critical value that accounts for
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multiple testing. For any real scalar d, define

t̂x,y(d) ≡
F̂x+1(y)− F̂x(y)− d

ŝx,y
, (7)

where ŝx,y is defined in (16) as an estimator of the standard deviation of F̂x+1(y)− F̂x(y). As

usual, in practice we compute the t-statistic centered at our hypothesized value d = 0, and

asymptotic properties can be bounded by the behavior of the t-statistic centered at the true

d = θx,y ≡ Fx+1(y)− Fx(y). As an important ingredient of our FWER derivations, Lemma

1 establishes the asymptotic normal distribution of random vector t̂ that contains all the

t-statistics centered at the true θx,y:

t̂ ≡ (t̂1, t̂2, . . . , t̂J−1)
′, t̂j ≡

(
t̂K−1,j(θK−1,j), t̂K−2,j(θK−2,j), . . . , t̂1,j(θ1,j)

)
. (8)

Lemma 1. Under Assumption A1,

t̂
d−→ t ∼ N(0,Σ), Σ = S′WS,

where W and S are non-random matrices defined in (14) and (18).

Proof. Under Assumption A1 and the central limit theorem (e.g., van der Vaart, 1998,

Prop. 2.27), as nx → ∞,

√
nx(F̂x(y)− Fx(y))

d−→ N
(
0, Fx(y)[1− Fx(y)]

)
. (9)

Let Â be the estimator of vector A that contains all conditional CDFs,

A ≡ (F1(1), F1(2), . . . , F1(J − 1), . . . , FK(1), FK(2), . . . , FK(J − 1))′. (10)

Under Assumption A1, by the continuous mapping theorem (CMT) (e.g., van der Vaart,

1998, Thm. 2.3),
√
n1(Â−A)

d−→ N(0,V ), (11)

where 0 is a vector of zeros and V is the (JK −K)× (JK −K) block diagonal matrix

V ≡


V 1 0 . . . 0

0 V 2 · · · 0
...

...
. . .

...

0 0 · · · V K

 (12)
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where each V k is a (J − 1)× (J − 1) matrix with entry in row i, column j denoted

V k
ij = γkFk(min{i, j})[1− Fk(max{i, j})].

We apply the delta method (e.g., van der Vaart, 1998, Thm. 3.1) to derive the asymptotic

distribution of the full vector θ̂ for testing the stochastic monotonicity inequalities. For

x ∈ {1, 2, . . . , K − 1} and y ∈ {1, 2, . . . , J − 1},

θ̂ ≡ (θ̂1, θ̂2, . . . , θ̂J−1)
′, (13)

where each θ̂j ≡ (θ̂K−1,j, θ̂K−2,j, . . . , θ̂1,j) and θ̂x,y ≡ F̂x+1(y)− F̂x(y) is the estimator of θx,y

defined in (4). Then,

√
n1(θ̂ − θ)

d−→ N(0,W ), W ≡ H ′V H , (14)

where H = ∂
∂A

θ′ is the partial derivative of the vector θ′ with respect to A in (10), and V

is from (12). Note each element of H is either −1, 0, or 1; more specifically, within each

column of H (the derivative of a particular θx,y with respect to A), one element is −1, one

element is 1, and the rest equal zero.

From (14), for each θ̂x,y, using n1/nx → γx from A1,

√
n1(θ̂x,y − θx,y) =

√
n1{[F̂x+1(y)− F̂x(y)]− [Fx+1(y)− Fx(y)]}

=

→√
γx+1︷ ︸︸ ︷√

n1/nx+1

use (9)︷ ︸︸ ︷√
nx+1[F̂x+1(y)− Fx+1(y)]−

→√
γx︷ ︸︸ ︷√

n1/nx

use (9)︷ ︸︸ ︷√
nx[F̂x(y)− Fx(y)]

d−→ N(0, σ2
x,y),

σx,y ≡
√
γxFx(y)[1− Fx(y)] + γx+1Fx+1(y)[1− Fx+1(y)], (15)

where the variances are summed because the subsamples for Xi = x and Xi = x + 1 are

independent given A1, and if W ⊥⊥ Z then Var(W + Z) = Var(W ) + Var(Z).

For the standard error of θ̂x,y, which is asymptotically σx,y/
√
n1 given (15), we use the

estimator

ŝx,y ≡

√
(n1/nx)F̂x(y)(1− F̂x(y)) + (n1/nx+1)F̂x+1(y)(1− F̂x+1(y))

n1

. (16)

By the consistency of the conditional CDF estimators and the CMT, as n1 → ∞,

√
n1ŝx,y =

√
(n1/nx)F̂x(y)(1− F̂x(y)) + (n1/nx+1)F̂x+1(y)(1− F̂x+1(y))

p−→
√
γxFx(y)(1− Fx(y)) + γx+1Fx+1(y)(1− Fx+1(y)) = σx,y, (17)

9



the asymptotic standard deviation in (15). Informally, the standard error estimator ŝx,y is

“consistent,” meaning formally that
√
n1ŝx,y

p−→ σx,y.

Substituting (16) into (7),

t̂x,y(θx,y) =
θ̂x,y − θx,y

ŝx,y
=

√
n1(θ̂x,y − θx,y)√

(n1/nx)F̂x(y)(1− F̂x(y)) + (n1/nx+1)F̂x+1(y)(1− F̂x+1(y))
.

Thus, we can write the vector of properly centered t-statistics as t̂ =
√
n1(θ̂ − θ)Ŝ, where

√
n1(θ̂ − θ) is the left-hand side of (14), and Ŝ is a diagonal matrix having elements

1/(ŝx,y
√
n1) matching the corresponding (x, y) from the θ vector; equivalently, the row i,

column j element of the matrix Ŝ is 1{i = j}Ŵij. By (17), Ŝ
p−→ S, the diagonal matrix

with corresponding (x, y) elements 1/σx,y,

S ≡


1/σK−1,1 0 · · · 0

0 1/σK−2,1 · · · 0
...

...
. . .

...

0 0 · · · 1/σ1,J−1

. (18)

By (14) and CMT, t̂ ≡ √
n1(θ̂ − θ)Ŝ

d−→ N(0,S′WS).

We provide some brief intuition for the critical value whose validity is formally established

in the proof of Theorem 2. There is some “least favorable” type of logic as in Section 4.1.1 of

Canay and Shaikh (2017), but it is more nuanced than simply finding a single least favorable

data-generating process, because the asymptotic variance matrix Σ in Theorem 1 depends on

more than the θx,y values and is estimated in practice. If the hypothesis H0x,y : θx,y ≤ 0 in (5)

is true, then given the definition in (7), t̂x,y(0) ≤ t̂x,y(θx,y). The maximum of the t̂x,y(0) among

true hypotheses is thus bounded above by the maximum of the t̂x,y(θx,y). The asymptotic

(1− α)-quantile of the former, which would yield exact FWER → α asymptotically, is thus

bounded above by the (1− α)-quantile of the maximum of the vector t in Theorem 1:

cα ≡ (1− α)-quantile of max
x,y

tx,y, (19)

where the tx,y are the elements of t and t ∼ N(0,Σ) by Theorem 1. In practice, the unknown

Σ can be replaced by consistent estimator Σ̂:

ĉα ≡ (1− α)-quantile of max
x,y

t̃x,y, t̃ ∼ N(0, Σ̂). (20)

Although an analytic formula is intractable, (20) can be simulated as in our code. Alterna-

tively, the distribution of t could be approximated by bootstrap.

10



Method 1. First, compute t-statistics t̂x,y(0) as in (7). Second, given desired FWER level

α, simulate the critical value ĉα in (20) following the steps in Section 2.5. Third, for each

(x, y), to test all H0x,y : θx,y ≤ 0 as in (5), reject H0x,y : θx,y ≤ 0 if t̂x,y(0) > ĉα. Alternatively,

to test the reversed family of hypotheses H≥
0x,y : θx,y ≥ 0, reject H≥

0x,y if t̂x,y(0) < −ĉα.

Method 1 includes the reversed H≥
0x,y because their rejection provides stronger evidence

of θx,y < 0 than does non-rejection of H0x,y. For example, even if θ̂x,y = 0.7 (our best guess

is a positive θx,y), if there is a small sample size or otherwise high uncertainty, we may still

not reject H0x,y : θx,y ≤ 0. In contrast, to reject H≥
0x,y, not only must we have θ̂x,y < 0, but it

must be significantly less than zero (compared to our uncertainty) for the test to control the

false positive rate. In sum, non-rejection of H0x,y suggests the data are consistent with the

hypothesis that Y is stochastically increasing in X, but rejection of H≥
0x,y provides stronger

evidence in favor of the inequalities that comprise stochastic increasingness of Y in X.

Theorem 2 theoretically justifies our MTP.

Theorem 2. Under Assumption A1, Method 1 has strong control of asymptotic FWER at

level α.

Proof. When testing original hypotheses H0x,y : Fx+1(y)−Fx(y) ≤ 0, the set of true hypothe-

ses is T ≡ {(x, y) : Fx+1(y)− Fx(y) ≤ 0}. For any true H0x,y,

t̂x,y(0) =
F̂x+1(y)− F̂x(y)

ŝx,y

≤ F̂x+1(y)− F̂x(y)−
≤0 given true H0x,y︷ ︸︸ ︷

[Fx+1(y)− Fx(y)]

ŝx,y
≡ t̂x,y(

θx,y︷ ︸︸ ︷
Fx+1(y)− Fx(y)). (21)

Thus,

FWER ≡ P(reject H0x,y for any (x, y) ∈ T ) = P(t̂x,y(0) > ĉα for any (x, y) ∈ T )

= P( max
(x,y)∈T

use (21)︷ ︸︸ ︷
t̂x,y(0) > ĉα)

≤ P( max
(x,y)∈T

t̂x,y(θx,y) > ĉα)

≤ P( max
any (x,y)

t̂x,y(θx,y) > ĉα) → P( max
any (x,y)

from Theorem 1︷︸︸︷
tx,y > cα) = α,

where the second inequality holds because T ⊆ {1, . . . , K−1}×{1, . . . , J−1} (“any” (x, y)),

and the convergence holds by Theorem 1 and the CMT (because max is continuous), along

with ĉα
p−→ cα, where ĉα was defined in (20) as the (1− α)-quantile of the max of a random
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vector following the N(0, Σ̂) distribution (with estimator Σ̂) and cα was defined in (19) as

the (1 − α)-quantile of the max of N(0,Σ) (with true Σ). This last part follows because

Σ̂
p−→ Σ (given A1 and CMT) and applying the CMT (the max of a normal vector has a

continuous, strictly increasing distribution function and thus continuous quantile function).

The asymptotic FWER bound for testing the reversed hypotheses H≥
0x,y : Fx+1(y) −

Fx(y) ≥ 0 follows essentially the same derivation with the same reason for each step be-

low. Now defining T ≥ ≡ {(x, y) : Fx+1(y)− Fx(y) ≥ 0},

FWER ≡ P(reject H≥
0x,y for any (x, y) ∈ T ≥) = P(t̂x,y(0) < −ĉα for any (x, y) ∈ T ≥)

= P( min
(x,y)∈T ≥

t̂x,y(0) < −ĉα)

≤ P( min
(x,y)∈T ≥

t̂x,y(θx,y) < −ĉα)

≤ P( min
any (x,y)

t̂x,y(θx,y) < −ĉα)

→ P( min
any (x,y)

tx,y < −cα) = P( − min
any (x,y)

tx,y > cα) = P( max
any (x,y)

tx,y > cα) = α,

also using the symmetry of the t ∼ N(0,Σ) distribution that implies max t
d
= −min t.

2.4 Confidence sets

The MTP in Method 1 can be inverted into confidence sets for the true set

T ≡ {(x, y) : θx,y ≤ 0}. (22)

The goal is, with high asymptotic probability, for inner confidence set ĈS inner to be contained

within the true set T , and for outer confidence set ĈSouter to contain T . That is, for

confidence level 1− α,

lim
n→∞

P(ĈS inner ⊆ T ) ≥ 1− α, lim
n→∞

P(ĈSouter ⊇ T ) ≥ 1− α. (23)

Intuitively, ĈS inner provides a conservative “estimate” of the true set T , while ĈSouter

gives a larger “estimate” describing how large the true set might be. Corresponding to the

earlier discussion of stronger and weaker evidence, the inner confidence set collects points

for which the reversed H≥
0x,y is rejected (strong evidence), whereas the outer confidence set

collects points for which the original H0x,y is not rejected (weak evidence).

Theorem 3 formally establishes the property in (23) for our confidence sets described in

Method 2.
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Method 2. First, run Method 1. The inner confidence set ĈS inner collects all pairs of (x, y)

for which the reversed null H≥
0x,y : θx,y ≥ 0 is rejected. The outer confidence set ĈSouter

collects all pairs of (x, y) for which the original null H0x,y : θx,y ≤ 0 is not rejected.

Theorem 3. Under Assumption A1, Method 2 satisfies (23).

Proof. For the inner CS, we want to derive the probability of the event that the inner

CS is contained within T , which is equivalently characterized as “(x, y) ∈ ĈS inner only if

(x, y) ∈ T .” With reversed hypotheses H≥
0x,y : θx,y ≥ 0 but T ≡ {(x, y) : θx,y ≤ 0},

P(ĈS inner ⊆ T ) = P(reject any H≥
0x,y only if (x, y) ∈ T )

= P(reject any H≥
0x,y only if θx,y ≤ 0)

= 1− P(reject any H≥
0x,y when θx,y > 0)

≥ 1− P(reject any H≥
0x,y when θx,y ≥ 0)

= 1− FWER ≥ 1− α + o(1)

because FWER ≤ α + o(1) by Theorem 2.

The outer CS contains all elements in the true set T if and only if we do not reject any

original null hypothesis H0x,y : θx,y ≤ 0 with (x, y) ∈ T . Similar to the derivation above, the

coverage probability is

P(T ⊆ ĈSouter) = P(no H0x,y rejected with (x, y) ∈ T )

= 1− P(reject any H0x,y with θx,y ≤ 0)

= 1− FWER ≥ 1− α + o(1)

again because FWER ≤ α + o(1) by Theorem 2.

If instead of T in (22) we are interested in its complement T ∁ ≡ {(x, y) : θx,y > 0}, then
the outer CS is the complement of the inner CS for T , and the inner CS is the complement

of the outer CS for T . This follows because the event ĈS inner ⊆ T is equivalent to the inner

CS complement containing T ∁, and the event ĈSouter ⊇ T is equivalent to the outer CS

complement being contained within T ∁. Thus, using the notation from (23),

lim
n→∞

P(ĈS
∁

inner ⊇ T ∁) = lim
n→∞

P(ĈS inner ⊆ T ) ≥ 1− α,

lim
n→∞

P(ĈS
∁

outer ⊆ T ∁) = lim
n→∞

P(ĈSouter ⊇ T ) ≥ 1− α.
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2.5 Critical value simulation

We compute critical value ĉα in (20) by simulation. Let

Σ̂ = Ŝ′Ŵ Ŝ, (24)

where Ŵ and Ŝ are the sample analogs of W and S from (14) and (18). The consistency

result in (17) implies Ŝ
p−→ S, and by the weak law of large numbers Ŵ

p−→ W , so applying

the continuous mapping theorem yields Σ̂
p−→ Σ.

Given Σ̂, the simulation proceeds as follows, as implemented in our code. First, we

randomly draw a vector from N(0, Σ̂). Second, we take the maximum of this vector. Third,

we repeat this processN times, collecting theN maxima. Fourth, we take the (1−α)-quantile

of these N maximum values; this is ĉα.

With large enough N , we can achieve arbitrarily small simulation error. Larger N im-

proves accuracy but increases computation time. Given our simulation results (Section 3),

we suggest N = 1000 as a default. In our empirical application, we use N = 100,000 because

computation time is still only a few seconds.

3 Simulations

This section presents simulations of finite-sample FWER for our asymptotically justified

multiple testing procedure when Y is ordinal or discrete. We use a variety of sample sizes and

numbers of Y and X categories. We use the “least favorable” configuration that maximizes

FWER by setting all null hypothesis inequalities to be binding: θx,y = 0 for all (x, y). We

provide code in R (R Core Team, 2023) to replicate our results.1

The simulation proceeds as follows. For the data generating process, Y andX respectively

have J andK categories. The conditional distribution of Y is uniform across the J categories,

so the conditional CDF is Fx(y) = y/J for each (x, y) and all θx,y ≡ Fx+1(y) − Fx(y) =

y/J − y/J = 0. After randomly drawing a dataset having nx observations with Xi = x for

each x (so total sample size n = Knx), Method 1 is run, with the critical value based on

N simulations, and the results are stored. This is repeated 1000 times. Because all H0x,y

are true, the simulated FWER is the proportion of simulated datasets for which at least one

H0x,y is rejected. Besides FWER, we report the full range (across all simulated datasets) of

simulated critical values cα for each case.

Table 1 presents the simulation results. They are divided into three sections correspond-

ing to the different (J,K), but results are qualitatively similar in each section, showing the

1Available at https://qianjoewu.github.io/

14

https://qianjoewu.github.io/


Table 1: Simulation results.

J K nx N α cα FWER

4 4 20 1000 0.05 [2.32, 2.59] 0.098
4 4 100 1000 0.05 [2.34, 2.58] 0.068
4 4 1000 1000 0.05 [2.36, 2.57] 0.060
4 4 10,000 1000 0.05 [2.36, 2.55] 0.045
4 4 10,000 10,000 0.05 [2.43, 2.52] 0.047
4 4 10,000 10,000 0.10 [2.18, 2.25] 0.112
4 4 10,000 10,000 0.01 [2.94, 3.08] 0.010

6 5 20 1000 0.05 [2.59, 2.84] 0.092
6 5 100 1000 0.05 [2.55, 2.81] 0.075
6 5 1000 1000 0.05 [2.57, 2.79] 0.068
6 5 10,000 1000 0.05 [2.60, 2.79] 0.053
6 5 10,000 10,000 0.05 [2.70, 2.77] 0.047
6 5 10,000 10,000 0.10 [2.45, 2.50] 0.105
6 5 10,000 10,000 0.01 [3.18, 3.32] 0.007

8 10 20 1000 0.05 [2.92, 3.18] 0.099
8 10 100 1000 0.05 [2.95, 3.18] 0.074
8 10 1000 1000 0.05 [2.94, 3.20] 0.056
8 10 10,000 1000 0.05 [2.95, 3.18] 0.046
8 10 10,000 10,000 0.05 [3.04, 3.12] 0.046
8 10 10,000 10,000 0.10 [2.82, 2.88] 0.090
8 10 10,000 10,000 0.01 [3.47, 3.61] 0.007
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following patterns. First, FWER is somewhat above α = 0.05 with the smallest sample size,

closer to 0.10, suggesting that (as usual) results from smaller samples should be interpreted

more cautiously. Second, as nx increases, FWER approaches the nominal α. This reflects

our procedure’s exact asymptotic FWER in this least favorable configuration; FWER would

be lower in other cases. Third, compared to N = 1000, computing the critical value using

N = 10,000 draws improves stability somewhat (tighter range of critical values) but improves

FWER accuracy only very slightly, so in practice we suggest using N = 1000 as the default.

4 Results for continuous outcomes

In this section, we describe our contributions with continuous Y .

4.1 Setting and inequalities

The setting, notation, and Assumption A1 are the same as in Section 2.1, but now Y is

continuous. To contrast with Y from Section 2.1, here we write R as the support of Y , with

the understanding that the true support may be a subset of R.
Analogous to (5), here we test

H0x,y : θx,y ≤ 0 for (x, y) ∈ {1, . . . , K − 1} × R, θx,y ≡ Fx+1(y)− Fx(y). (25)

This is an infinite number of hypotheses, corresponding to an infinite number of rejection

decisions. However, they are highly dependent across y values, so for a given x, usually the

rejected H0x,y correspond to only a few intervals of y values. Computationally, of course, we

do not compute an infinite number of test statistics, but rather compute values corresponding

to each observation and interpolate in a precise way.

4.2 Methodology

Our methodology builds on that of Goldman and Kaplan (2018). Their Method 5 includes

a multiple testing procedure that directly applies to our setting when X is binary, so K = 2.

That is, given θy ≡ F2(y) − F1(y), their Method 5 tests H0y : θy ≤ 0 for each y ∈ R,
using order statistics to achieve strong control of finite-sample FWER (see their Theorem

9). Such multiple testing has clear economic significance. For example, let F2(·) and F1(·) be
the wage CDFs for individuals with and without a high-school degree, respectively, in dollars

per hour. Then H0y means individuals without a degree have at least as high probability

of wage below $y per hour as individuals with a degree. The multiple testing procedure
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lets us test such comparisons across all y while controlling the probability of at least one

false rejection. Reversing the direction of inequality, rejecting H≥
0y : θy ≥ 0 provides stronger

evidence in favor of F2(y) < F1(y), meaning that individuals with a degree are less likely

than individuals without a degree to have wage below $y per hour.

Extending to any finite K ≥ 2 with FWER α, we apply their Method 5 to each of the

K − 1 pairs of consecutive (x, x + 1) values with Bonferroni-adjusted level α/(K − 1). In

the special case K = 2, there is no adjustment because K − 1 = 1. As discussed in our

introduction, the Bonferroni adjustment errs on the conservative side, but not too egregiously

because the dependence across X is negative rather than positive. (It is important that we

only use the Bonferroni adjustment across X and not across Y , which has an infinite number

of points with strong positive dependence.) Theorem 4 formalizes this.

Theorem 4. Consider the multiple testing procedure that applies Method 5 of Goldman

and Kaplan (2018) with level α/(K − 1) a total of K − 1 times: first to H0x,y in (25) for

(x, y) ∈ {1} × R, second to H0x,y for (x, y) ∈ {2} × R, etc., up to (x, y) ∈ {K − 1} × R.
Under Assumption A1 with strictly increasing conditional CDFs Fx(·), this procedure has

strong control of finite-sample FWER at level α.

Proof. We apply a typical Bonferroni strategy given that Method 5 of Goldman and Kaplan

(2018) controls finite-sample FWER at adjusted level α/(K − 1) for any given x. The

finite-sample FWER is

FWER ≡ P(reject any true H0x,y over (x, y) ∈ X × R)

= P

(
K−1⋃
x=1

reject any true H0x,y over y ∈ R

)

≤
K−1∑
x=1

≤α/(K−1) by Goldman and Kaplan (2018)︷ ︸︸ ︷
P(reject any true H0x,y over y ∈ R) ≤ (K − 1)α/(K − 1) = α,

so the overall FWER is no greater than α.

As in Section 2.4, we can invert the multiple testing procedure into confidence sets for

the true set T ≡ {(x, y) : θx,y ≤ 0} from (22). Again, the outer confidence set collects the

(x, y) corresponding to H0x,y : θx,y ≤ 0 that are not rejected, whereas the inner confidence

set collects the (x, y) corresponding to rejected H≥
0x,y : θx,y ≥ 0. The finite-sample FWER

control translates to finite-sample coverage probabilities.

Theorem 5. Consider the inner confidence set ĈS inner that collects all pairs of (x, y) for

which the reversed null H≥
0x,y : θx,y ≥ 0 is rejected by the multiple testing procedure in The-

orem 4, and the outer confidence set ĈSouter that collects all pairs of (x, y) for which the
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original null H0x,y : θx,y ≤ 0 is not rejected. Under Assumption A1 with strictly increasing

conditional CDFs Fx(·), these confidence sets have finite-sample coverage probability:

P(ĈS inner ⊆ T ) ≥ 1− α, P(ĈSouter ⊇ T ) ≥ 1− α.

Proof. The proof is identical to that of Theorem 3 except the very final inequality because

here we have FWER ≤ α instead of FWER ≤ α + o(1). Thus, instead of 1 − FWER ≥
1− α + o(1), the final line becomes 1− FWER ≥ 1− α.

Also like before, if instead of T in (22) we are interested in its complement T ∁ ≡ {(x, y) :
θx,y > 0}, then the outer CS is the complement of the inner CS for T , and the inner CS is

the complement of the outer CS for T . That is,

P(ĈS
∁

inner ⊇ T ∁) = P(ĈS inner ⊆ T ) ≥ 1− α,

P(ĈS
∁

outer ⊆ T ∁) = P(ĈSouter ⊇ T ) ≥ 1− α.

5 Empirical applications

To demonstrate our methodology, we study the relationship between health/well-being and

education. We use ordinal outcome variables for general health and life satisfaction in Sec-

tions 5.1 and 5.2, respectively, and we use a continuous measure of physical health as the

outcome variable in Section 5.3. All our applications use publicly available data from the

2022 Understanding Society study (University of Essex, Institute for Social and Economic

Research, 2024), previously known as the UK Household Longitudinal Study. We provide

all code and files to replicate our results.2

5.1 General health and education

Numerous studies have examined the relationship between general health and educational

attainment. Surveying numerous empirical papers, Grossman (2006, §4.1) concludes that

education is the most important variable associated with “health,” across a variety of mea-

sures including self-reported general health. Individuals with higher education generally

report better health. Potential explanatory mechanisms include education affecting prefer-

ences (like for smoking, exercise, and time preferences/patience), increasing adherence to

curative treatments, and increasing health knowledge and literacy (Grossman, 2006, §4.1).

2Available at https://qianjoewu.github.io/. All code is in R (R Core Team, 2023), with help from
the MASS package (Venables and Ripley, 2002) for multivariate normal random vector generation, and from
the packages ggplot2 (Wickham, 2016), ggmosaic (Jeppson and Hofmann, 2023; Jeppson, Hofmann, and
Cook, 2023), and scales (Wickham, Pedersen, and Seidel, 2023) for plotting.
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Cutler and Lleras-Muney (2010) focus on the relationship between education and “health be-

haviors” (like smoking and exercise), finding roles for knowledge, cognitive ability, income,

insurance, and social networks, all of which increase with education and in turn improve

health.

This relationship between health and education potentially differs across different margins

of education as well as health categories. For example, the relationship between high-school

dropouts and graduates may differ from the relationship between bachelor’s and graduate

degree holders. In addition, the relationship for “very good” health status may differ from

the relationship for “poor” health status. Our multiple testing method can detect such

heterogeneous patterns because it is nonparametric and does not impose any restrictions. We

assess evidence for where the level of general health is stochastically increasing in education.

We use the following variables from the Understanding Society 2022 data (University of

Essex, Institute for Social and Economic Research, 2024). General health variable Y (lmn_

scsf1) is an ordinal measure with five categories: “poor,” “fair,” “good,” “very good,” and

“excellent,” respectively coded as 1, 2, 3, 4, and 5. Education variable X (recoded from lmn_

nisced11_dv) has four categories: “no high school degree” (highest completed level is lower

secondary), “HS degree only” (highest completed is upper secondary), “bachelor’s degree”

(in the codebook: “Bachelor or equivalent”), and “graduate degree” (codebook: master’s

or doctorate or equivalent of either), respectively coded as 1, 2, 3, and 4. We restrict the

age range to 30–65 years old for a fair comparison of people with various levels of education

including graduate degrees, and to concentrate on those who are eligible for the workforce.

For simplicity, observations with missing values are dropped and weights are not used. Age

is non-missing for 99.96% of the sample, and among those aged 30–65, education and general

health are both observed for 92.6% of observations.

Section 5.1 visualizes the data on general health and education in a mosaic plot. Each

column corresponds to a category of X, and its width is proportional to the number of

observations in that category. For example, the no-HS column is significantly wider than the

HS column, showing that more individuals in the data do not have a high-school degree than

have (only) a high-school degree. Each cell’s area is proportional to the sample proportion

of individuals with that particular value of (X, Y ); the text label shows that proportion as

a percentage, along with the corresponding number of observations in that cell. Because

the joint probability of (X, Y ) = (x, y) is the product of the marginal X = x probability

and the conditional Y probability given X = x, within a column corresponding to X = x,

each cell’s height is proportional to the proportion of observations with the corresponding y

value within the Xi = x subsample. These conditional probabilities are scaled such that the

full height of each column is probability one (or 100%). For example, in the no-HS column,
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Figure 1: Mosaic plot of general health and education.
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the “good” health category is tall because P(good | no-HS) is relatively large. This further

implies that the breaks between cells within a column show the conditional CDF values. For

example, in the no-HS column, the top of the “good” cell is around 2/3 between the bottom

and top of the column, indicating the empirical conditional CDF is around F̂1(3) ≈ 2/3.

The mosaic plot shows stochastic monotonicity in the sample. Mathematically, for each

level y, the mosaic plot shows F̂4(y) ≤ F̂3(y) ≤ F̂2(y) ≤ F̂1(y). Qualitatively, this says that

the distribution of general health is “better” at higher levels of education in the sense of

first-order stochastic dominance. However, we wish to learn not only about the sample but

about the population relationship. Our methods help assess the strength of the evidence

that these patterns also hold in the population.

Table 2: Test statistics for general health versus education (ĉ0.05 = 2.62).

Education category x

General health y 1 (vs. 2) 2 (vs. 3) 3 (vs. 4)

1: poor −2.86 −4.16 −6.05
2: fair (or below) −4.96 −5.85 −5.13
3: good (or below) −4.41 −6.24 −6.58
4: very good (or below) −1.30 −4.66 −3.12

True set: points where general health is better at next-higher edu-
cation level, {(x, y) : Fx(y) ≥ Fx+1(y)}. Gray shading: outer confi-
dence set. Bold: inner confidence set. Confidence level 95%. Critical
value computed using N = 100,000 random draws.

Table 2 shows our inference results, which can be interpreted as follows. The numbers

are the t-statistics from (7) for testing the null hypotheses H0x,y : Fx(y) ≥ Fx+1(y). Such a

t-statistic is negative when F̂x(y) > F̂x+1(y), indicating a smaller proportion of individuals

with health status y or below in the Xi = x + 1 subsample than in the Xi = x subsample,

meaning better general health at the higher education level x+1 than at x. If the t-statistic is

more negative than the critical value −ĉ0.05 = −2.62, then there is strong evidence that this

is true in the population, too. Consequently, when t̂x,y(0) < −ĉ0.05, then (x, y) is included

in the 95% inner confidence set, which collects the points with strong evidence of general

health increasing with education; such t-statistics are in bold. The 95% outer confidence

set includes (x, y) as long as there is no strong evidence in the opposite direction, i.e., as

long as t̂x,y(0) < ĉ0.05; such t-statistics are shaded gray . Note the t̂x,y(0) < −ĉ0.05 are thus

bold and shaded because the outer confidence set contains the inner confidence set. For

example, the table’s bottom-center number (F̂3(4)− F̂2(4))/ŝ2,4 = −4.66 is the t-statistic for

(x, y) = (2, 4), comparing individuals with only a high-school degree (x = 2) to those with

only a bachelor’s degree (x = 3). Using Method 1, this means we do not reject the null that
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F2(4) ≥ F3(4) (hence the gray shading of the −4.66 cell), but we do reject the reversed null

that F2(4) ≤ F3(4) in favor of the conclusion F2(4) > F3(4) because −4.66 < −ĉ0.05 = −2.62

(hence bold −4.66 in the table). Because there are only J = 5 categories of Y , we can also

interpret the conclusion F2(4) > F3(4) as P(Y = 5 | X = 2) < P(Y = 5 | X = 3), i.e.,

a lower probability of excellent health status in the high-school-only subpopulation than in

the bachelor’s-only subpopulation.

Table 2 shows substantial and consistent evidence that higher education is associated with

better general health. Almost all computed t-statistics are negative and below the negative

5% FWER critical value, collectively forming a relatively large 95% inner confidence set

for the true set of points {(x, y) : Fx(y) ≥ Fx+1(y)} where general health is better at the

higher education level. The outer confidence set includes all cells, including the t-statistic

at (x, y) = (1, 4) that is negative but not below −ĉ0.05. This reflects the closer empirical

conditional CDF values for the high-school group versus the no-high-school group for very

good (or below) health status.

Overall, our results show strong evidence that general health is stochastically increasing

in education for all education levels, though slightly weaker evidence that the high-school

subpopulation stochastically dominates the no-high-school subpopulation. Compared to a

global test that simply fails to reject the global null that health stochastically increases with

education, our methodology provides much stronger and more precise results.

5.2 Life satisfaction and education

Subjective well-being, including life satisfaction, has been increasingly studied as a core di-

mension of human welfare (e.g., Blanchflower and Oswald, 2004; Clark, Frijters, and Shields,

2008; Deaton, 2008). Like other measures of subjective well-being, life satisfaction is ordinal.

Using a parametric latent model (like ordered probit) yields fragile results, as detailed by

Bond and Lang (2019). Our method respects the ordinal nature of life satisfaction without

imposing any parametric assumptions or any cardinal values.3

Several studies have examined the relationship between educational attainment and life

satisfaction, of which we discuss three examples here. Oreopoulos (2007, §5.3) uses com-

pulsory schooling reforms in the UK as instruments and finds that one additional year of

education increases the probability of later being satisfied with life by over five percentage

points, suggesting that education has substantial long-run benefits for subjective well-being.

In contrast, focusing on the 1947 UK compulsory schooling reform and using a regression

discontinuity, Banks and Mazzonna (2012, §4) find negative although not statistically sig-

3This is also true of other work of ours (Kaplan and Zhao, 2023; Wu and Kaplan, 2025), but those
methods do not address stochastic monotonicity.
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nificant effects of education on quality of life (measured by the CASP-19 index), reported

in their Table 7. Further highlighting heterogeneity, de New, Schurer, and Sulzmaier (2021,

§7.1) find different effects within their Australian data, which includes two states’ compul-

sory schooling reforms whose effects are estimated by difference-in-differences. Their Figure

6 shows that the one-year increase in mandatory schooling increased life satisfaction in the

state of Victoria but not South Australia, as well as smaller differences between men and

women within each state.

Our analysis complements these. Their shared strategy to get causal identification from

compulsory schooling law changes means the focus is on a relatively low margin of education,

such as someone who would have stopped schooling at age 14 if not for the 1947 UK reform

that required them to stay in school for one additional year, or the 1964 reform in Victoria,

Australia. We do not make any causal claims but study three different and higher margins of

education, including the margin between bachelor’s and graduate degrees. Additionally, we

allow for heterogeneity across levels of life satisfaction, while accounting for multiple testing.

In our study, the tested monotonic relationship could be potentially different when (for ex-

ample) comparing high-school dropouts and graduates than when comparing bachelor’s and

graduate degree holders, and the relationship may also differ across levels of life satisfaction.

We use the following variables from the Understanding Society 2022 data (University of

Essex, Institute for Social and Economic Research, 2024). The outcome variable Y is self-

reported overall life satisfaction, with the seven categories from “completely dissatisfied” up

to “completely satisfied” coded as 1 through 7. The education variable X is the same as in

Section 5.1. Also as in Section 5.1, we restrict to ages 30–65 years old, observations with

missing values are dropped, and weights are not used. Age is non-missing for 99.96% of the

sample, and among those aged 30–65, education and life satisfaction are both observed for

92.1% of observations.

Figure 2 visualizes the data on life satisfaction and education in the same type of mosaic

plot as in Section 5.1. This mosaic plot shows that stochastic monotonicity is not quite

satisfied even in the sample. For each level y at or below “somewhat satisfied,” the mosaic

plot shows F̂4(y) ≤ F̂3(y) ≤ F̂2(y) ≤ F̂1(y). Visually, higher education generally corresponds

to greater shares of individuals in higher satisfaction categories. However, in the top level of

satisfaction, this relationship does not hold: the lowest education group has the highest sam-

ple proportion in the highest “completely satisfied” category, and the next-lowest education

group has the next-highest such proportion. However, we wish to learn not only about the

sample, but also about the population relationship. Our methods help assess the strength

of the evidence that these patterns hold in the population.

Table 3 shows our inference results with the same structure as in Table 2. The results gen-
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Figure 2: Mosaic plot of life satisfaction and education.

Table 3: Test statistics for life satisfaction versus education (ĉ0.05 = 2.73).

Education category x

Life satisfaction y 1 (vs. 2) 2 (vs. 3) 3 (vs. 4)

1: completely dsat. −2.54 −1.99 −3.12
2: mostly dsat. (or below) −1.63 −3.11 −2.19
3: somewhat dsat. (or below) −2.43 −2.74 −2.78
4: neither (or below) −4.58 −3.91 −5.21
5: somewhat sat. (or below) −2.74 −3.87 −3.68
6: mostly sat. (or below) 3.09 0.53 −0.09

True set: points where life satisfaction is better at next-higher education
level, {(x, y) : Fx(y) ≥ Fx+1(y)}. Gray shading: outer confidence set. Bold:
inner confidence set. Confidence level 95%. Critical value computed using
N = 100,000 random draws.
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erally support life satisfaction increasing with education, but with some important caveats.

In total, 10 out of the 18 points are included in the inner confidence set, where there is strong

evidence of life satisfaction increasing with education. Most of these points are in the middle

categories, “somewhat dissatisfied” to “somewhat satisfied.” The relatively weaker evidence

in the lowest two categories is due to the smaller number of observations in those categories,

as seen in the Figure 2 mosaic plot. Besides these 10 points in the inner confidence set, six

of the other points have a negative t-statistic, but not below −ĉ0.05; for such points, there

is only suggestive evidence of life satisfaction increasing with education. One point has a

positive t-statistic that is below ĉ0.05: the point estimate suggests life satisfaction decreasing

with education, but there is enough uncertainty that it is still consistent with life satisfaction

increasing with education. The final point (x, y) = (1, 6) has a t-statistic negative enough

to reject life satisfaction increasing with education, so it is not even included in the outer

confidence set. These last two points with positive t-statistics are both for Y ≤ 6, which is

equivalent to P(Y = 7) = 1 − P(Y ≤ 6). That is, the data show strong evidence that the

probability of being “completely satisfied” is higher for the no-high-school group (x = 1)

than the high-school group (x = 2), and weaker evidence that the probability of “completely

satisfied” is higher for the high-school group (x = 2) than the bachelor’s group (x = 3).

These disaggregated results are more informative than a global test. The global test would

simply reject the null that life satisfaction is stochastically increasing in education, due to

the strong evidence against the global null at (x, y) = (1, 6). However, the other 17 points

are consistent with life satisfaction increasing with education, and at 10 of those points,

there is strong evidence that indeed life satisfaction increases with education. Compared to

the simple “reject” result of a global test, our method provides richer, more nuanced results.

5.3 Physical health and education

Complementing our analysis of general health, we separately examine physical and mental

health. Specifically, we consider the physical component summary/score (PCS) and mental

component summary/score (MCS) that summarize responses to the SF-12, the widely used

12-item Short-Form Health Survey. As the names suggest, PCS focuses on physical well-

being, while MCS captures aspects of mental health. Studying the relationship between

PCS/MCS and education helps our descriptive understanding of health inequality. This can

also suggest potential causal mechanisms if the relationship differs across educational levels

and/or health levels. Here we focus on PCS; the MCS empirical CDFs are very similar across

education levels and have essentially no statistically significant differences.

We use the following variables. Our continuous Y variable is PCS (based on lmn_sf12pcs
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_dv), with higher values indicating better physical health. We rescale the original value Ỹ

to have range [0, 100] by taking Y = 100[Ỹ − min(Ỹ )]/[max(Ỹ ) − min(Ỹ )]. PCS sum-

marizes responses to questions related to physical functioning, bodily pain, general health

perceptions, and physical role limitations. Our ordinal X variable is education (recoded

from lmn_nisced11_dv). It has four categories: “no high school degree,” “HS degree only,”

“bachelor’s degree,” and “graduate degree” (master’s, professional, or doctoral), respectively

coded as 1, 2, 3, and 4. As in Section 5.1, we restrict the age range to 30–65 years old and

drop missing values.

Physical component score
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Figure 3: Empirical CDF of PCS by different education categories.

Figure 3 presents empirical CDFs of PCS for each of the four education categories.

The graph shows that the empirical CDF curves are ordered such that F̂4(·) ≤ F̂3(·) ≤
F̂2(·) ≤ F̂1(·), indicating that higher education is associated with higher PCS, meaning better

physical health. However, this stochastic monotonicity in the sample does not necessarily

imply stochastic monotonicity in the population. Our methods help quantify the statistical

uncertainty about the population relationship.

Figure 4 shows our inner and outer confidence sets. We use a 95% confidence level

for each, so given Theorem 5, our confidence sets have (at least) 95% coverage not only

asymptotically but in finite samples. The true set contains all points (x, y) where the pop-

ulation conditional CDFs are consistent with PCS stochastically increasing in education,

Fx+1(y) ≤ Fx(y). The inner confidence set consists of the dark gray regions, which provide a

conservative “estimate” of this true set, in the sense that there is a 95% ex ante (frequentist)

probability of sampling a dataset for which the inner confidence set is contained within the

true set. That is, the dark gray regions show where there is especially strong evidence sup-

porting stochastic increasingness. The outer confidence set includes the dark gray regions
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Figure 4: Inner (dark gray) and outer (light gray) 95% confidence sets.

as well as the light gray regions.

Figure 4 shows generally strong evidence of physical health stochastically increasing with

education. The inner confidence set extends across a wide range of PCS values for each

education comparison. This is true especially for PCS values from around 50 to 80, which

covers most of the distribution: in the sample, 50 is the 8th percentile, and 80 is the 85th

percentile. That is, there is strong evidence of higher education associated with better

physical health across most of the physical health distribution. Although uncertainty is

higher in the upper and lower tails, the outer confidence set still includes the full support

[0, 100] for each education category. This means that there is no statistically significant

evidence against PCS stochastically increasing with education.

In sum, Figure 4 provides more granular and precise evidence of physical health stochas-

tically increasing in education, compared to a global test that would merely “not reject” the

null hypothesis of stochastic increasingness.

6 Conclusion

We have proposed multiple testing procedures and confidence sets to provide a richer assess-

ment of stochastic monotonicity, by separately considering each conditional CDF inequality

that together comprise stochastic monotonicity, for continuous, discrete, or ordinal outcomes.

In future work, to complement our frequentist confidence sets, we plan to develop Bayesian

credible sets and assess their frequentist properties. For the related joint testing problem,

the frequentist test is much more conservative than a Bayesian test even asymptotically (e.g.,

Kaplan and Zhuo, 2021; Kline, 2011), but this does not translate directly to multiple testing
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and related confidence sets. Deriving multiple testing procedures for continuous X without

discretization would also be valuable.
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